695 research outputs found

    Continuous and discontinuous piecewise linear solutions of the linearly forced inviscid Burgers equation

    Full text link
    We study a class of piecewise linear solutions to the inviscid Burgers equation driven by a linear forcing term. Inspired by the analogy with peakons, we think of these solutions as being made up of solitons situated at the breakpoints. We derive and solve ODEs governing the soliton dynamics, first for continuous solutions, and then for more general shock wave solutions with discontinuities. We show that triple collisions of solitons cannot take place for continuous solutions, but give an example of a triple collision in the presence of a shock.Comment: To appear in Journal of Nonlinear Mathematical Physics (proceedings of NEEDS 2007). 16 pages, 3 figures, LaTeX + AMS packages + pstrick

    Tunneling Theory for Tunable Open Quantum Systems of Ultracold Atoms in One-Dimensional Traps

    Get PDF
    The creation of tunable open quantum systems is becoming feasible in current experiments with ultracold atoms in low-dimensional traps. In particular, the high degree of experimental control over these systems allows detailed studies of tunneling dynamics, e.g., as a function of the trapping geometry and the interparticle interaction strength. In order to address this exciting opportunity we present a theoretical framework for two-body tunneling based on the rigged Hilbert space formulation. In this approach, bound, resonant and scattering states are included on an equal footing, and we argue that the coupling of all these components is vital for a correct description of the relevant threshold phenomena. In particular, we study the tunneling mechanism for two-body systems in one-dimensional traps and different interaction regimes. We find a strong dominance of sequential tunneling of single particles for repulsive and weakly attractive systems, while there is a signature of correlated pair tunneling in the calculated many-particle flux for strongly attractive interparticle interaction.Comment: To be published in Phys. Rev. A (Rapid Communication

    The inverse spectral problem for the discrete cubic string

    Full text link
    Given a measure mm on the real line or a finite interval, the "cubic string" is the third order ODE −ϕâ€Čâ€Čâ€Č=zmϕ-\phi'''=zm\phi where zz is a spectral parameter. If equipped with Dirichlet-like boundary conditions this is a nonselfadjoint boundary value problem which has recently been shown to have a connection to the Degasperis-Procesi nonlinear water wave equation. In this paper we study the spectral and inverse spectral problem for the case of Neumann-like boundary conditions which appear in a high-frequency limit of the Degasperis--Procesi equation. We solve the spectral and inverse spectral problem for the case of mm being a finite positive discrete measure. In particular, explicit determinantal formulas for the measure mm are given. These formulas generalize Stieltjes' formulas used by Krein in his study of the corresponding second order ODE −ϕâ€Čâ€Č=zmϕ-\phi''=zm\phi.Comment: 24 pages. LaTeX + iopart, xypic, amsthm. To appear in Inverse Problems (http://www.iop.org/EJ/journal/IP

    The Cauchy two-matrix model

    Full text link
    We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.Comment: 34 pages, 2 figures. V2: changes only to metadat

    Cauchy Biorthogonal Polynomials

    Full text link
    The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite-Pade' approximation scheme. Associated to any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeroes are simple and positive. We then specialize the kernel to the Cauchy kernel 1/{x+y} and show that the ensuing biorthogonal polynomials solve a four-term recurrence relation, have relevant Christoffel-Darboux generalized formulae, and their zeroes are interlaced. In addition, these polynomial solve a combination of Hermite-Pade' approximation problems to a Nikishin system of order 2. The motivation arises from two distant areas; on one side, in the study of the inverse spectral problem for the peakon solution of the Degasperis-Procesi equation; on the other side, from a random matrix model involving two positive definite random Hermitian matrices. Finally, we show how to characterize these polynomials in term of a Riemann-Hilbert problem.Comment: 38 pages, partially replaces arXiv:0711.408

    Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey

    Get PDF
    We test and reject the claim of Segal et al. (1993) that the correlation of redshifts and flux densities in a complete sample of IRAS galaxies favors a quadratic redshift-distance relation over the linear Hubble law. This is done, in effect, by treating the entire galaxy luminosity function as derived from the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance indicator; equivalently, we compare the flux density distribution of galaxies as a function of redshift with predictions under different redshift-distance cosmologies, under the assumption of a universal luminosity function. This method does not assume a uniform distribution of galaxies in space. We find that this test has rather weak discriminatory power, as argued by Petrosian (1993), and the differences between models are not as stark as one might expect a priori. Even so, we find that the Hubble law is indeed more strongly supported by the analysis than is the quadratic redshift-distance relation. We identify a bias in the the Segal et al. determination of the luminosity function, which could lead one to mistakenly favor the quadratic redshift-distance law. We also present several complementary analyses of the density field of the sample; the galaxy density field is found to be close to homogeneous on large scales if the Hubble law is assumed, while this is not the case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros, postscript also available at http://www.astro.princeton.edu/~library/preprints/pop682.ps.g

    Inverse problems associated with integrable equations of Camassa-Holm type; explicit formulas on the real axis, I

    Full text link
    The inverse problem which arises in the Camassa--Holm equation is revisited for the class of discrete densities. The method of solution relies on the use of orthogonal polynomials. The explicit formulas are obtained directly from the analysis on the real axis without any additional transformation to a "string" type boundary value problem known from prior works

    The Degasperis-Procesi equation with self-consistent sources

    Full text link
    The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.Comment: 15 page

    Projective dynamics and first integrals

    Full text link
    We present the theory of tensors with Young tableau symmetry as an efficient computational tool in dealing with the polynomial first integrals of a natural system in classical mechanics. We relate a special kind of such first integrals, already studied by Lundmark, to Beltrami's theorem about projectively flat Riemannian manifolds. We set the ground for a new and simple theory of the integrable systems having only quadratic first integrals. This theory begins with two centered quadrics related by central projection, each quadric being a model of a space of constant curvature. Finally, we present an extension of these models to the case of degenerate quadratic forms.Comment: 39 pages, 2 figure

    A class of Poisson-Nijenhuis structures on a tangent bundle

    Get PDF
    Equipping the tangent bundle TQ of a manifold with a symplectic form coming from a regular Lagrangian L, we explore how to obtain a Poisson-Nijenhuis structure from a given type (1,1) tensor field J on Q. It is argued that the complete lift of J is not the natural candidate for a Nijenhuis tensor on TQ, but plays a crucial role in the construction of a different tensor R, which appears to be the pullback under the Legendre transform of the lift of J to co-tangent manifold of Q. We show how this tangent bundle view brings new insights and is capable also of producing all important results which are known from previous studies on the cotangent bundle, in the case that Q is equipped with a Riemannian metric. The present approach further paves the way for future generalizations.Comment: 22 page
    • 

    corecore