51 research outputs found

    Ultraviolet Renormalization of the Nelson Hamiltonian through Functional Integration

    Get PDF
    Starting from the N-particle Nelson Hamiltonian defined by imposing an ultraviolet cutoff, we perform ultraviolet renormalization by showing that in the zero cutoff limit a self-adjoint operator exists after a logarithmically divergent term is subtracted from the original Hamiltonian. We obtain this term as the diagonal part of a pair interaction appearing in the density of a Gibbs measure derived from the Feynman-Kac representation of the Hamiltonian. Also, we show existence of a weak coupling limit of the renormalized Hamiltonian and derive an effective Yukawa interaction potential between the particles.Comment: 28 pages, revision of section 2 and typos correcte

    Seismo-electric conversion in shale: experiment and analytical modelling

    Get PDF
    The development of seismo-electric exploration techniques relies critically upon the strength of the seismo-electric conversion. However, there have been very few seismo-electric measurements or modelling on shales, despite shales accounting for the majority of unconventional reservoirs. We have carried out seismo-electric measurements on Sichuan Basin shales (permeability 0.00147–0.107 mD), together with some comparative measurements on sandstones (permeability 0.2–60 mD). Experimental results show that the amplitudes of the seismo-electric coupling coefficient in shales are comparable to that exhibited by sandstones, and are approximately independent of frequency in the seismic frequency range (<1 kHz). Numerical modelling has also been used to examine the effects of varying (i) dimensionless number, (ii) porosity, (iii) permeability, (iv) tortuosity and (v) zeta potential on seismo-electric conversion in porous media. It was found that while changes in dimensionless number and permeability seem to have little effect, seismo-electric coupling coefficient is highly sensitive to changes in porosity, tortuosity and zeta potential. Numerical modelling suggests that the origin of the seismo-electric conversion in shales is enhanced zeta potentials caused by clay minerals, which are highly frequency dependent. This is supported by a comparison of our numerical modelling with our experimental data, together with an analysis of seismo-electric conversion as a function of clay mineral composition from XRD measurements. The sensitivity of seismo-electric coupling to the clay minerals suggests that seismo-electric exploration may have potential for the characterization of clay minerals in shale gas and shale oil reservoirs

    Permeability of fault rocks in siliciclastic reservoirs: Recent advances

    Get PDF
    It is common practice to create geologically realistic production simulation models of fault compartmentalized reservoirs. Data on fault rock properties are required, to calculate transmissibility multipliers that are incorporated into these models, to take into account the impact of fault rocks on fluid flow. Industry has generated large databases of fault rock permeability, which are commonly used for this purpose. Much of the permeability data were collected using two inappropriate laboratory practices with measurements being made at low confining pressure with distilled water as the permeant. New fault rock permeability measurements have been made at high confining pressures using formation compatible brines as the permeant. Fault permeability decreases by an average of five fold as net confining pressure is increased from that used in previous measurements (i.e. ∼70 psi) to that approaching in situ conditions (i.e. 5000 psi). On the other hand, permeability increases by around the same amount if reservoir brine is used as the permeant instead of distilled water. So overall, these two inappropriate laboratory practices used in previous studies cancel each other out meaning that legacy fault rock property data may still have value for modelling cross-fault flow in petroleum reservoirs. A poor correlation exists between clay content and fault rock permeability, which is easily explained by the application of a simple clay-sand mixing model. This emphasises the need to gather fault permeability data directly from the reservoir of interest. The cost of such studies could be significantly reduced by screening core samples using a CT scanner so that only samples that are likely to impact fluid flow are analyzed in detail. The stress dependence of fault permeability identified in this study is likely to be primarily caused by damage generated during or following coring. So it is probably not necessary to take into account the impact of stress on fault permeability in simulation models unless the faults of interest are likely to reach failure and reactivate

    The effect of rock permeability and porosity on seismoelectric conversion: experiment and analytical modelling

    Get PDF
    The seismoelectric method is a modification of conventional seismic measurements which involves the conversion of an incident poroelastic wave to an electromagnetic signal that can be measured at the surface or down a borehole. This technique has the potential to probe the physical properties of the rocks at depth. The problem is that we currently know very little about the parameters which control seismoelectric conversion and their dependence on frequency and permeability, which limits the development of the seismoelectric method. The seismoelectric coupling coefficient indicates the strength of seismoelectric conversion. In our study, we focus on the effects of the reservoir permeability, porosity and frequency on the seismoelectric coupling coefficient through both experimental and numerical modelling. An experimental apparatus was designed to record the seismoelectric signals induced in water-saturated samples in the frequency range from 1 kHz to 500 kHz. The apparatus was used to measure seismoelectric coupling coefficient as a function of porosity and permeability. The results were interpreted using a micro-capillary model for the porous medium to describe the seismoelectric coupling. The relationship between seismoelectric coupling coefficients and the permeability and porosity of samples were also examined theoretically. The combined experimental measurements and theoretical analysis of the seismoelectric conversion has allowed us to ascertain the effect of increasing porosity and permeability on the seismoelectric coefficient. We found a general agreement between the theoretical curves and the test data, indicating that seismoelectric conversion is enhanced by increases in porosity over a range of different frequencies. However, seismoelectric conversion has a complex relationship with rock permeability, which changes with frequency. For the low-permeability rock samples (0-100×10‾15 m²), seismoelectric coupling strengthens with the increase of permeability logarithmically in the low frequency range (0-10 kHz); in the high frequency range (10-500 kHz), the seismoelectric coupling is at first enhanced, with small increases of permeability leading to small increases in size in electric coupling. However, continued increases of permeability then lead to a slight decrease in size and image conversion again. For the high-permeability rock samples (300×10‾15 m² - 2200×10‾15 m²), the seismoelectric conversion shows the same variation trend with low-permeability samples in low frequency range; but it monotonically decreases with permeability in the high frequency range. The experimental and theoretical results also indicate that seismoelectric conversion seems to be more sensitive to the changes of low-permeability samples. This observation suggests that seismic conversion may have advantages in characterizing low permeability reservoirs such as tight gas and tight oil reservoirs and shale gas reservoirs

    Permeability Prediction in Tight Carbonate Rocks using Capillary Pressure Measurements

    Get PDF
    The prediction of permeability in tight carbonate reservoirs presents ever more of a challenge in the hydrocarbon industry today. It is the aim of this paper to ascertain which models have the capacity to predict permeability reliably in tight carbonates, and to develop a new one, if required. This paper presents (i) the results of laboratory Klinkenberg-corrected pulse decay measurements of carbonates with permeabilities in the range 65 nD to 0.7 mD, (ii) use of the data to assess the performance of 16 permeability prediction models, (iii) the development of an improved prediction model for tight carbonate rocks, and (iv) its validation using an independent data set. Initial measurements including porosity, permeability and mercury injection capillary pressure measurements (MICP) were carried out on a suite of samples of Kometan limestone from the Kurdistan region of Iraq. The prediction performance of sixteen different percolation-type and Poiseuille-type permeability prediction models were analysed with the measured data. Analysis of the eight best models is included in this paper and the analysis of the remainder is provided in supplementary material. Some of the models were developed especially for tight gas sands, while many were not. Critically, none were developed for tight gas carbonates. Predictably then, the best prediction was obtained from the generic model and the RGPZ models (R2 = 0.923, 0.920 and 0.915, respectively), with other models performing extremely badly. In an attempt to provide a better model for use with tight carbonates, we have developed a new model based on the RGPZ theoretical model by adding an empirical scaling parameter to account for the relationship between grain size and pore throat size in carbonates. The generic model, the 28 new RGPZ Carbonate model and the two original RGPZ models have been tested against independent data from a suite of 42 samples of tight Solnhofen carbonates. All four models performed very creditably with the generic and the new RGPZ Carbonate models performing well (R2 = 0.840 and 0.799, respectively). It is clear from this study that the blind application of conventional permeability prediction techniques to carbonates, and particularly to tight carbonates, will lead to gross errors and that the development of new methods that are specific to tight carbonates is unavoidable

    Stratigraphic correlation and paleoenvironmental analysis of the hydrocarbon-bearing Early Miocene Euphrates and Jeribe formations in the Zagros folded-thrust belt

    Get PDF
    The Lower Miocene Euphrates and Jeribe formations are considered as the main targets of the Tertiary petroleum system in the western part of the Zagros Basin. The formations consist of carbonates with some evaporate intercalations of the Dhiban Formation. This study utilized data from a field investigation including newly described outcrop sections and newly discovered productive oil fields within the Kirkuk embayment zone of the Zagros fold and thrust belt such as Sarqala and Kurdamir wells. This work is the first to show a stratigraphic correlation and paleoenvironmental interpretation by investigating both well data and new outcrop data. Three depositional environments were identified, (1) an inner and outer ramp belts environment, (2) shoal environment, and (3) restricted lagoon environment. Within these 3 environments, 12 microfacies were identified, based on the distribution of fauna mainly benthonic foraminifera, rock textures, and sedimentary structures. The inferred shallow water depths and variable salinities in both the Euphrates Formation and Jeribe Formation carbonates are consistent with deposition on the inner ramp (restricted lagoon and shoal) environments. Those found in the Euphrates Formation constrained the depositional environment to the restricted lagoon and shoal environment, while the microfacies in the Jeribe Formation provided evidence for an inner ramp and middle to outer ramp belt environments. This study represents the first detailed research that focuses on the stratigraphic correlation and changes in carbonate facies with the main aim to provide a wider understanding of stratigraphy of these carbonate reservoirs throughout the northern part of Iraq

    Ocean carbon from space: Current status and priorities for the next decade

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data for Fig. 1a were generated from a free Scopus (https://www.scopus.com/) search of the terms "Ocean carbon satellite" (using All fields) in March 2022. Data from Fig. 1b and 1c were generated from the workshop registration and are available within the figure (participation number, geographical representation and gender split).The ocean plays a central role in modulating the Earth’s carbon cycle. Monitoring how the ocean carbon cycle is changing is fundamental to managing climate change. Satellite remote sensing is currently our best tool for viewing the ocean surface globally and systematically, at high spatial and temporal resolutions, and the past few decades have seen an exponential growth in studies utilising satellite data for ocean carbon research. Satellite-based observations must be combined with in-situ observations and models, to obtain a comprehensive view of ocean carbon pools and fluxes. To help prioritise future research in this area, a workshop was organised that assembled leading experts working on the topic, from around the world, including remote-sensing scientists, field scientists and modellers, with the goal to articulate a collective view of the current status of ocean carbon research, identify gaps in knowledge, and formulate a scientific roadmap for the next decade, with an emphasis on evaluating where satellite remote sensing may contribute. A total of 449 scientists and stakeholders participated (with balanced gender representation), from North and South America, Europe, Asia, Africa, and Oceania. Sessions targeted both inorganic and organic pools of carbon in the ocean, in both dissolved and particulate form, as well as major fluxes of carbon between reservoirs (e.g., primary production) and at interfaces (e.g., air-sea and land–ocean). Extreme events, blue carbon and carbon budgeting were also key topics discussed. Emerging priorities identified include: expanding the networks and quality of in-situ observations; improved satellite retrievals; improved uncertainty quantification; improved understanding of vertical distributions; integration with models; improved techniques to bridge spatial and temporal scales of the different data sources; and improved fundamental understanding of the ocean carbon cycle, and of the interactions among pools of carbon and light. We also report on priorities for the specific pools and fluxes studied, and highlight issues and concerns that arose during discussions, such as the need to consider the environmental impact of satellites or space activities; the role satellites can play in monitoring ocean carbon dioxide removal approaches; economic valuation of the satellite based information; to consider how satellites can contribute to monitoring cycles of other important climatically-relevant compounds and elements; to promote diversity and inclusivity in ocean carbon research; to bring together communities working on different aspects of planetary carbon; maximising use of international bodies; to follow an open science approach; to explore new and innovative ways to remotely monitor ocean carbon; and to harness quantum computing. Overall, this paper provides a comprehensive scientific roadmap for the next decade on how satellite remote sensing could help monitor the ocean carbon cycle, and its links to the other domains, such as terrestrial and atmosphere.European Space AgencySimons FoundationUK National Centre for Earth Observation (NCEO)UKRIAtlantic Meridional Transect ProgrammeSwiss National Science Foundatio
    corecore