10 research outputs found

    CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers

    Get PDF
    The membrane attack complex (MAC) is one of the immune system’s first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant β-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how β-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions

    Trace element distribution in selected edible tissues of Zebu (Bos indicus) cattle slaughtered at Jimma, SW Ethiopia

    Get PDF
    The amount of trace elements present in edible bovine tissues is of importance for both animal health and human nutrition. This study presents data on trace element concentrations in semitendinosus and cardiac muscles, livers and kidneys of 60 zebu (Bos indicus) bulls, sampled at Jimma, Ethiopia. From 28 of these bulls, blood samples were also obtained. Deficient levels of copper were found in plasma, livers, kidneys and semitendinosus muscles. Suboptimal selenium concentrations were found in plasma and semitendinosus muscles. Semitendinosus muscles contained high iron concentrations. Trace elements were mainly stored in the liver, except for iron and selenium. Cardiac muscles generally contained higher concentrations of trace elements than semitendinous muscles except for zinc. A strong association was found between liver and kidney concentrations of copper, iron, cobalt and molybdenum. Liver storage was well correlated with storage in semitendinosus muscle for selenium and with cardiac muscle for cobalt and selenium. Plasma concentrations of copper, selenium, cobalt were well related with their respective liver concentrations and for cobalt and selenium, also with cardiac muscle concentrations. The data suggest multiple trace element deficiencies in zebu cattle in South-West Ethiopia, with lowered tissue concentrations as a consequence. Based on the comparison of our data with other literature, trace element concentrations in selected edible tissues of Bos indicus seem quite similar to those in Bos taurus. However, tissue threshold values for deficiency in Bos taurus cattle need to be refined and their applicability for Bos indicus cattle needs to be evaluated

    Structure of the dynein-2 complex and its assembly with intraflagellar transport trains

    No full text
    Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4 MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves auto-inhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits control dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into dynein-2’s interaction with IFT trains and the origin of diverse functions in the dynein family
    corecore