38 research outputs found

    Population Pharmacokinetics of Liposomal Amphotericin B in Immunocompromised Children

    Get PDF
    BACKGROUND Liposomal amphotericin B (LAmB) is widely used in the treatment of invasive fungal disease (IFD) in adults and children. There are relatively limited PK data to inform optimal dosing in children that achieves systemic drug exposures comparable to those of adults. OBJECTIVES To describe the pharmacokinetics of LAmB in children aged 1-17 years with suspected or documented IFD. METHODS Thirty-five children were treated with LAmB at dosages of 2.5-10 mg kg(-1) daily. Samples were taken at baseline and at 0.5-2.0 hourly intervals for twenty-four hours after receipt of the first dose (n=35 patients) and on the final day of therapy (n=25 patients). LAmB was measured using high performance liquid chromatography (HPLC). The relationship between drug exposure and development of toxicity was explored. RESULTS An evolution in PK was observed during the course of therapy resulting in a proportion of patients (n=13) having significantly higher maximum serum concentration (Cmax) and area under the concentration time curve (AUC0-24) later in the course of therapy, without evidence of drug accumulation (Cmin accumulation ratio, AR < 1.2). The fit of a 2-compartment model incorporating weight and an exponential decay function describing volume of distribution best described the data. There was a statistically significant relationship between mean AUC0-24 and probability of nephrotoxicity (OR 2.37; 95% CI 1.84-3.22, p=0.004). CONCLUSIONS LAmB exhibits nonlinear pharmacokinetics. A third of children appear to experience a time-dependent change in PK, which is not explained by weight, maturation or observed clinical factors

    Repurposing and Reformulation of the Antiparasitic Agent Flubendazole for Treatment of Cryptococcal Meningoencephalitis, a Neglected Fungal Disease

    Full text link
    Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply, and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum antiparasitic activity but also have in vitro antifungal activity that includes Cryptococcus neoformans. Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships, and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans, with a modal MIC of 0.125 mg/liter using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal β-tubulin. Rapid fungicidal activity was evident in a hollow-fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg of body weight/day) orally resulted in an ∼2 log10CFU/g reduction in fungal burden compared with that in vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the cerebrospinal fluid (CSF) or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis

    Exercise-induced changes in circulating levels of transforming growth factor-ß-1 in humans: methodological considerations

    Get PDF
    The appropriate use of systemic antifungals is vital in the prevention and treatment of invasive fungal infection (IFI) in immunosuppressed children and neonates. This multicenter observational study describes the inpatient prescribing practice of antifungal drugs for children and neonates and identifies factors associated with prescribing variability. A single-day point prevalence study of antimicrobial use in hospitalized neonates and children was performed between October and December 2012. The data were entered through a study-specific Web-based portal using a standardized data entry protocol. Data were recorded from 17,693 patients from 226 centers. A total of 136 centers recorded data from 1,092 children and 380 neonates receiving at least one antifungal agent. The most frequently prescribed systemic antifungals were fluconazole (n=355) and amphotericin B deoxycholate (n=195). The most common indications for antifungal administration in children were medical prophylaxis (n=325), empirical treatment of febrile neutropenia (n=122), and treatment of confirmed or suspected IFI (n=100 [14%]). The treatment of suspected IFI in low-birthweight neonates accounted for the majority of prescriptions in the neonatal units (n=103). An analysis of variance (ANOVA) demonstrated no significant effect of clinical indication (prophylaxis or treatment of systemic or localized infection) on the total daily dose (TDD). Fewer than one-half of the patients (n=371) received a TDD within the dosing range recommended in the current guidelines. Subtherapeutic doses were prescribed in 416 cases (47%). The predominance of fluconazole and high incidence of subtherapeutic doses in participating hospitals may contribute to suboptimal clinical outcomes and an increased predominance of resistant pathogenic fungi. A global consensus on antifungal dosing and coordinated stewardship programs are needed to promote the consistent and appropriate use of antifungal drugs in neonates and children

    The role of the multidisciplinary team in antifungal stewardship

    No full text
    This is a pre-copyedited, author-produced version of an article accepted for publication in: Journal of Antimicrobial Chemotherapy following peer review. The version of record Agrawal, S., et al. (2016). "The role of the multidisciplinary team in antifungal stewardship." Journal of Antimicrobial Chemotherapy 71(suppl_2): ii37-ii42. is available online at: https://doi.org/10.1093/jac/dkw395]There are a variety of challenges faced in the management of invasive fungal diseases (IFD), including high casefatality rates, high cost of antifungal drugs and development of antifungal resistance. The diagnostic challenges and poor outcomes associated with IFD have resulted in excessive empirical use of antifungals in various hospital settings, exposing many patients without IFD to potential drug toxicities as well as causing spiralling antifungal drug costs. Further complexity arises as different patient groups show marked variation in their risk for IFD, fungal epidemiology, sensitivity and specificity of diagnostic tests and the pharmacokinetics and pharmacodynamics of antifungal drugs. To address these issues and to ensure optimal management of IFD, specialist knowledge and experience from a range of backgrounds is required, which extends beyond the remit of most antibiotic stewardship programmes. The first step in the development of any antifungal stewardship (AFS) programme is to build a multidisciplinary team encompassing the necessary expertise in the management of IFD to develop and implement the AFS programme. The specific roles of the key individuals within the AFS team and the importance of collaboration are discussed in this article.Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377Gilead Sciences and Pfizer. (S.A.

    Pharmacokinetics and Pharmacodynamics of Amphotericin B Deoxycholate, Liposomal Amphotericin B, and Amphotericin B Lipid Complex in an In Vitro Model of Invasive Pulmonary Aspergillosis ▿

    No full text
    The pharmacodynamic and pharmacokinetic (PK-PD) properties of amphotericin B (AmB) formulations against invasive pulmonary aspergillosis (IPA) are not well understood. We used an in vitro model of IPA to further elucidate the PK-PD of amphotericin B deoxycholate (DAmB), liposomal amphotericin B (LAmB) and amphotericin B lipid complex (ABLC). The pharmacokinetics of these formulations for endovascular fluid, endothelial cells, and alveolar cells were estimated. Pharmacodynamic relationships were defined by measuring concentrations of galactomannan in endovascular and alveolar compartments. Confocal microscopy was used to visualize fungal biomass. A mathematical model was used to calculate the area under the concentration-time curve (AUC) in each compartment and estimate the extent of drug penetration. The interaction of LAmB with host cells and hyphae was visualized using sulforhodamine B-labeled liposomes. The MICs for the pure compound and the three formulations were comparable (0.125 to 0.25 mg/liter). For all formulations, concentrations of AmB progressively declined in the endovascular fluid as the drug distributed into the cellular bilayer. Depending on the formulation, the AUCs for AmB were 10 to 300 times higher within the cells than within endovascular fluid. The concentrations producing a 50% maximal effect (EC50) in the endovascular compartment were 0.12, 1.03, and 4.41 mg/liter for DAmB, LAmB, and ABLC, respectively, whereas, the EC50 in the alveolar compartment were 0.17, 7.76, and 39.34 mg/liter, respectively. Confocal microscopy suggested that liposomes interacted directly with hyphae and host cells. The PK-PD relationships of the three most widely used formulations of AmB differ markedly within an in vitro lung model of IPA
    corecore