337 research outputs found
Transverse fluctuations of grafted polymers
We study the statistical mechanics of grafted polymers of arbitrary stiffness
in a two-dimensional embedding space with Monte Carlo simulations. The
probability distribution function of the free end is found to be highly
anisotropic and non-Gaussian for typical semiflexible polymers. The reduced
distribution in the transverse direction, a Gaussian in the stiff and flexible
limits, shows a double peak structure at intermediate stiffnesses. We also
explore the response to a transverse force applied at the polymer free end. We
identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review
Patterns of herpes simplex virus shedding over 1 month and the impact of acyclovir and HIV in HSV-2-seropositive women in Tanzania
Objectives Few studies have examined the frequency and duration of genital herpes simplex virus (HSV) shedding in sub-Saharan Africa. This study describes HSV shedding patterns among a sample of HSV-2-seropositive women enrolled in a placebo-controlled trial of HSV suppressive therapy (acyclovir 400 mg twice a day) in Tanzania.Methods Trial participants were invited to participate in a substudy involving 12 clinic visits over 4 weeks. At each visit, cervical, vaginal and external skin swabs were taken and analysed for HSV DNA using inhouse real-time PCR.Results HSV shedding was mainly subclinical (90%; 57/63 shedding days in the placebo arm). The most frequent shedding site was the external skin, but HSV DNA was detected from all three sites on 42% (27/63) of shedding days. In HIV-negative women, HSV DNA was detected on 3% (9/275) of days in the acyclovir versus 11% (33/309) in the placebo arm, while in HIV-positive women, detection was on 14% (23/160) versus 19% (30/155) of days, respectively.Conclusions HSV shedding was common, varying greatly by individual. Shedding rates were similar to studies in African and non-African settings. Among HIV-negative women, shedding rates were lower in the acyclovir arm; however, acyclovir did not substantially impact on HSV shedding in HIV-positive women
Patterning of wound-induced intercellular Ca2+ flashes in a developing epithelium
Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ's final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca2+) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca2+ transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca2+ transients induced by laser ablation. The resulting intercellular Ca2+ flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca2+ transients show spatially non-uniform characteristics across the proximal–distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca2+ transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca2+ flashes. The relative Ca2+ flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca2+ velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca2+ propagation. Thus, intercellular Ca2+ transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue
Self-organization and Mechanical Properties of Active Filament Bundles
A phenomenological description for active bundles of polar filaments is
presented. The activity of the bundle results from crosslinks, that induce
relative displacements between the aligned filaments. Our generic description
is based on momentum conservation within the bundle. By specifying the internal
forces, a simple minimal model for the bundle dynamics is obtained, capturing
generic dynamic behaviors. In particular, contracted states as well as solitary
and oscillatory waves appear through dynamic instabilities. The introduction of
filament adhesion leads to self-organized persistent filament transport.
Furthermore, calculating the tension, homogeneous bundles are shown to be able
to actively contract and to perform work against external forces. Our
description is motivated by dynamic phenomena in the cytoskeleton and could
apply to stress-fibers and self-organization phenomena during cell-locomotion.Comment: 19 pages, 10 figure
Structure formation in active networks
Structure formation and constant reorganization of the actin cytoskeleton are
key requirements for the function of living cells. Here we show that a minimal
reconstituted system consisting of actin filaments, crosslinking molecules and
molecular-motor filaments exhibits a generic mechanism of structure formation,
characterized by a broad distribution of cluster sizes. We demonstrate that the
growth of the structures depends on the intricate balance between
crosslinker-induced stabilization and simultaneous destabilization by molecular
motors, a mechanism analogous to nucleation and growth in passive systems. We
also show that the intricate interplay between force generation, coarsening and
connectivity is responsible for the highly dynamic process of structure
formation in this heterogeneous active gel, and that these competing mechanisms
result in anomalous transport, reminiscent of intracellular dynamics
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
Getting research into policy - Herpes simplex virus type-2 (HSV-2) treatment and HIV infection: international guidelines formulation and the case of Ghana
BACKGROUND: Observational epidemiological and biological data indicate clear synergies between Herpes simplex virus type 2 (HSV-2) and HIV, whereby HSV-2 enhances the potential for HIV acquisition or transmission. In 2001, the World Health Organization (WHO) launched a call for research into the possibilities of disrupting this cofactor effect through the use of antiherpetic therapy. A WHO Expert Meeting was convened in 2008 to review the research results. The results of the trials were mostly inconclusive or showed no impact. However, the WHO syndromic management treatment guidelines were modified to include acyclovir as first line therapy to treat genital ulcer disease on the basis of the high prevalence of HSV-2 in most settings, impact and cost-benefit of treatment on ulcer healing and quality of life among patients. METHODS: This paper examines the process through which the evidence related to HIV-HSV-2 interactions influenced policy at the international level and then the mechanism of international to national policy transfer, with Ghana as a case study. To better understand the context within which national policy change occurs, special attention was paid to the relationships between researchers and policy-makers as integral to the process of getting evidence into policy. Data from this study were then collected through interviews conducted with researchers, program managers and policy-makers working in sexual health/STI at the 2008 WHO Expert Meeting in Montreux, Switzerland, and in Accra, Ghana. RESULTS: The major findings of this study indicate that investigations into HSV-2 as a cofactor of HIV generated the political will necessary to reform HSV-2 treatment policy. Playing a pivotal role at both the international level and within the Ghanaian policy context were 'policy networks' formed either formally (WHO) or informally (Ghana) around an issue area. These networks of professionals serve as the primary conduit of information between researchers and policy-makers. Donor influence was cited as the single strongest impetus and impediment to policy change nationally. CONCLUSIONS: Policy networks may serve as the primary driving force of change in both international context and in the case of Ghana. Communication among researchers and policy-makers is critical for uptake of evidence and opportunities may exist to formalize policy networks and engage donors in a productive and ethical way
Genital herpes evaluation by quantitative TaqMan PCR: correlating single detection and quantity of HSV-2 DNA in cervicovaginal lavage fluids with cross-sectional and longitudinal clinical data
Abstract Objective To evaluate the utility of a single quantitative PCR (qPCR) measurement of HSV (HSV-1&2) DNA in cervicovaginal lavage (CVL) specimens collected from women with predominantly chronic HSV-2 infection in assessing genital HSV shedding and the clinical course of genital herpes (GH) within a cohort with semiannual schedule of follow up and collection of specimens. Methods Two previously described methods used for detection of HSV DNA in mucocutaneous swab samples were adapted for quantification of HSV DNA in CVLs. Single CVL specimens from 509 women were tested. Presence and quantity of CVL HSV DNA were explored in relation to observed cross-sectional and longitudinal clinical data. Results The PCR assay was sensitive and reproducible with a limit of quantification of ~50 copies per milliliter of CVL. Overall, 7% of the samples were positive for HSV-2 DNA with median log10 HSV-2 DNA copy number of 3.9 (IQR: 2.6-5.7). No HSV-1 was detected. Presence and quantity of HSV-2 DNA in CVL directly correlated with the clinical signs and symptoms of presence of active symptomatic disease with frequent recurrences. Conclusion Single qPCR measurement of HSV DNA in CVL fluids of women with chronic HSV-2 infection provided useful information for assessing GH in the setting of infrequent sampling of specimens. Observed positive correlation of the presence and quantity of HSV-2 DNA with the presence of active and more severe course of HSV-2 infection may have clinical significance in the evaluation and management of HSV-2 infected patients
Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR) assays for the differential diagnosis of influenza-like illness
<p>Abstract</p> <p>Background</p> <p>Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak.</p> <p>Methods</p> <p>We developed a multiplexed PCR (MT-PCR) assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques.</p> <p>Results</p> <p>The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples.</p> <p>Conclusions</p> <p>MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.</p
- …