2,899 research outputs found

    High-temperature, long-life polyimide seals for hydraulic actuator rods

    Get PDF
    Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given

    Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    Get PDF
    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior

    The Underestimation Of Egocentric Distance: Evidence From Frontal Matching Tasks

    Get PDF
    There is controversy over the existence, nature, and cause of error in egocentric distance judgments. One proposal is that the systematic biases often found in explicit judgments of egocentric distance along the ground may be related to recently observed biases in the perceived declination of gaze (Durgin & Li, Attention, Perception, & Psychophysics, in press), To measure perceived egocentric distance nonverbally, observers in a field were asked to position themselves so that their distance from one of two experimenters was equal to the frontal distance between the experimenters. Observers placed themselves too far away, consistent with egocentric distance underestimation. A similar experiment was conducted with vertical frontal extents. Both experiments were replicated in panoramic virtual reality. Perceived egocentric distance was quantitatively consistent with angular bias in perceived gaze declination (1.5 gain). Finally, an exocentric distance-matching task was contrasted with a variant of the egocentric matching task. The egocentric matching data approximate a constant compression of perceived egocentric distance with a power function exponent of nearly 1; exocentric matches had an exponent of about 0.67. The divergent pattern between egocentric and exocentric matches suggests that they depend on different visual cues

    COMPTEL gamma ray and neutron measurements of solar flares

    Get PDF
    COMPTEL on the Compton Gamma Ray Observatory has measured the flux of x‐rays and neutrons from several solar flares. These data have also been used to image the Sun in both forms of radiation. Unusually intense flares occurred during June 1991 yielding data sets that offer some new insight into of how energetic protons and electrons are accelerated and behave in the solar environment. We summarize here some of the essential features in the solar flare data as obtained by COMPTEL during June 1991

    Neutron and gamma‐ray measurements of the solar flare of 1991 June 9

    Get PDF
    The COMPTEL Imaging Compton Telescope on‐board the Compton Gamma Ray Observatory measured significant neutron and γ‐ray fluxes from the solar flare of 9 June 1991. The γ‐ray flux had an integrated intensity (≳1 MeV) of ∼30 cm−2, extending in time from 0136 UT to 0143 UT, while the time of energetic neutron emission extended approximately 10 minutes longer, indicating either extended proton acceleration to high energies or trapping and precipitation of energetic protons. The production of neutrons without accompanying γ‐rays in the proper proportion indicates a significant hardening of the precipitating proton spectrum through either the trapping or extended acceleration process

    Science with an ngVLA: Observing the Effects of Chemistry on Exoplanets and Planet Formation

    Get PDF
    One of the primary mechanisms for inferring the dynamical history of planets in our Solar System and in exoplanetary systems is through observation of elemental ratios (i.e. C/O). The ability to effectively use these observations relies critically on a robust understanding of the chemistry and evolutionary history of the observed abundances. Significant efforts have been devoted to this area from within astrochemistry circles, and these efforts should be supported going forward by the larger exoplanetary science community. In addition, the construction of a next-generation radio interferometer will be required to test many of these predictive models in situ, while simultaneously providing the resolution necessary to pinpoint the location of planets in formation.Comment: To be published in the ASP Monograph Series, "Science with a Next-Generation VLA", ed. E. J. Murphy (ASP, San Francisco, CA

    Quantitative analysis of cell types during growth and morphogenesis in Hydra

    Get PDF
    Tissue maceration was used to determine the absolute number and the distribution of cell types in Hydra. It was shown that the total number of cells per animal as well as the distribution of cells vary depending on temperature, feeding conditions, and state of growth. During head and foot regeneration and during budding the first detectable change in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. These results and the finding that nerve cells are most concentrated in the head region, diminishing in density down the body column, are discussed in relation to tissue polarity

    Imagined Self-Motion Differs from Perceived Self-Motion: Evidence from a Novel Continuous Pointing Method

    Get PDF
    Background The extent to which actual movements and imagined movements maintain a shared internal representation has been a matter of much scientific debate. Of the studies examining such questions, few have directly compared actual full-body movements to imagined movements through space. Here we used a novel continuous pointing method to a) provide a more detailed characterization of self-motion perception during actual walking and b) compare the pattern of responding during actual walking to that which occurs during imagined walking. Methodology/Principal Findings This continuous pointing method requires participants to view a target and continuously point towards it as they walk, or imagine walking past it along a straight, forward trajectory. By measuring changes in the pointing direction of the arm, we were able to determine participants' perceived/imagined location at each moment during the trajectory and, hence, perceived/imagined self-velocity during the entire movement. The specific pattern of pointing behaviour that was revealed during sighted walking was also observed during blind walking. Specifically, a peak in arm azimuth velocity was observed upon target passage and a strong correlation was observed between arm azimuth velocity and pointing elevation. Importantly, this characteristic pattern of pointing was not consistently observed during imagined self-motion. Conclusions/Significance Overall, the spatial updating processes that occur during actual self-motion were not evidenced during imagined movement. Because of the rich description of self-motion perception afforded by continuous pointing, this method is expected to have significant implications for several research areas, including those related to motor imagery and spatial cognition and to applied fields for which mental practice techniques are common (e.g. rehabilitation and athletics)
    corecore