15,206 research outputs found

    Internal photoemission from quantum well heterojunction superlattices by phononless free-carrier absorption

    Get PDF
    The possibility of phononless free-carrier absorption in quantum well heterojunction superlattices was investigated. Order of magnitude calculation showed that the absorption coefficient was significantly enhanced over the phonon-assisted process. Important aspects of the enhancement in the design of infrared photodetectors are discussed

    Two-dimensional quasineutral description of particles and fields above discrete auroral arcs

    Get PDF
    Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations

    On computations of the integrated space shuttle flowfield using overset grids

    Get PDF
    Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield

    On the structures and mapping of auroral electrostatic potentials

    Get PDF
    The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere

    Studies in upper and lower atmosphere coupling

    Get PDF
    The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere

    Dips in Partial Wave Amplitudes from Final State Interactions

    Full text link
    We consider the dip-peak structures in the J=0 partial wave amplitudes for processes \gamma\gamma\rightarrow W^+W^-~ \mbox{and}~\gamma\gamma,gg\rightarrow t\overline{t} taking into account the corresponding Born term process and the rescattering process where the intermediate state is rescattered through the exchange of Higgs resonance state in the direct channel.Comment: 9 pages, CPP-93-21, 6 figures not include

    Sugar additives for MALDI matrices improve signal allowing the smallest nucleotide change (A:T) in a DNA sequence to be resolved

    Get PDF
    Sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) of DNA is critical for obtaining high quality mass spectra. Sample impurity, solvent content, substrate surface and environmental conditions (temperature and humidity) all affect the rate of matrix–analyte co-crystallization. As a result, laser fluence threshold for desorption/ionization varies from spot to spot. When using 3-hydroxypicolinic acid (3-HPA) as the matrix, laser fluence higher than the threshold value reduces mass resolution in time-of-flight (TOF) MS as the excess energy transferred to DNA causes metastable decay. This can be overcome by either searching for ‘hot’ spots or adjusting the laser fluence. However, both solutions may require a significant amount of operator manipulation and are not ideal for automatic measurements. We have added various sugars for crystallization with the matrix to minimize the transfer of excess laser energy to DNA molecules. Fructose and fucose were found to be the most effective matrix additives. Using these additives, mass resolution for DNA molecules does not show noticeable deterioration as laser energy increases. Improved sample preparation is important for the detection of single nucleotide polymorphisms (SNPs) using primer extension with a single nucleotide. During automatic data acquisition it is difficult to routinely detect heterozygous A/T mutations, which requires resolving a mass difference of 9 Da, unless a sugar is added during crystallization

    Damage coefficients in low resistivity silicon

    Get PDF
    Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed
    • …
    corecore