274 research outputs found

    When the Law is Understood—L3C No

    Get PDF
    The November, 2009 issue of Community Dividend, included an article entitled “The L3C: A new business model for socially responsible investing.” The article spoke enthusiastically about “[t]he low-profit limited liability company, or L3C, …a newly developed form of business that blends attributes of nonprofit and for-profit organizations in order to promote investment in socially responsible objectives.” We understand the enthusiasm; proponents of the L3C have predicted dramatic benefits. However, after careful study of the relevant law, we have concluded that the enthusiasm is misplaced. The L3C concept is fundamentally flawed, potentially dangerous, and at best counterproductive. We also understand that our skepticism may make us seem like a pair of Grinches. We want, therefore, to briefly describe our experience in this realm of law and to outline the legal issues we have considered. We have each been involved in the law and practice of limited liability companies for more than 20 years. One of us (Bill) has a full-time practice that includes substantial amounts of work with low-income housing and community development financing transactions and extensive work with nonprofit organizations. The other of us (Daniel) is a professor of law, who was the Reporter for the Uniform Limited Partnership Act (from the National Conference of Commissioners on Uniform State Laws) and Co-Reporter for the Revised Uniform Limited Liability Company Act. Each of us has taught and written extensively about LLCs. In our assessment of the L3C concept, we have considered the arguments and claims of the L3C’s proponents (including statements made in state legislatures), and also the laws providing for limited liability companies, regulating charitable foundations, and governing the sale of securities. The promoters of state L3C legislation describe three principal benefits from the L3C form: (1) the L3C complies or “dovetails” with IRS program-related investment (“PRI”) rules, thereby enabling private foundation investment in qualifying business enterprises that operate according to for-profit metrics (but nonetheless for socially beneficial purposes); (2) the L3C permits “tranched investment” through which foundations can make high risk/low return investments to enable profit-seekers to make low risk/high return investments, thereby bringing market-rate capital into socially beneficial enterprises; and (3) the L3C creates a “brand” to enable easy comprehension and use of the PRI tool. Our research shows that none of these benefits exist

    Colossal magnetostriction and negative thermal expansion in the frustrated antiferromagnet ZnCr2Se4

    Full text link
    A detailed investigation of ZnCr2Se4 is presented which is dominated by strong ferromagnetic exchange but orders antiferromagnetically at T_N = 21 K. Specific heat C and thermal expansion Delta L/L exhibit sharp first-order anomalies at the antiferromagnetic transition. T_N is strongly reduced and shifted to lower temperatures by external magnetic fields and finally is fully suppressed suggesting a field induced quantum critical behavior close to 60 kOe. Delta L/L(T) is unusually large and exhibits negative thermal expansion below 75 K down to T_N indicating strong frustration of the lattice. Magnetostriction Delta L/L(H) reveals colossal values (0.5x10^{-3}) comparable to giant magnetostriction materials. Electron-spin resonance, however, shows negligible spin-orbital coupling excluding orbitally induced Jahn-Teller distortions. The obtained results point to a spin-driven origin of the structural instability at T_N explained in terms of competing ferromagnetic and antiferromagnetic exchange interactions yielding strong bond frustration.Comment: 5 pages 4 figure

    Spin-driven Phonon Splitting in Bond-frustrated ZnCr2S4

    Get PDF
    Utilizing magnetic susceptibility, specific heat, thermal expansion and IR spectroscopy we provide experimental evidence that the two subsequent antiferromagnetic transitions in ZnCr_2S_4 at T_N1 = 15 K and T_N2= 8 K are accompanied by significant thermal and phonon anomalies. The anomaly at T_N2 reveals a strong temperature hysteresis typical for a first-order transformation. Due to strong spin-phonon coupling both magnetic phase transitions induce a splitting of phonon modes, where at T_N1 the high-frequency and at T_N2 the low-frequency modes split. The anomalies and phonon splitting observed at T_N2 are strongly suppressed by magnetic field. Regarding the small positive Curie-Weiss temperature Theta= 8 K, we argue that this scenario of two different magnetic phases with concomitant different magneto-elastic couplings results from the strong competition of ferromagnetic and antiferromagnetic exchange of equal strength.Comment: 4 pages, 4 figure

    The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans

    Get PDF
    BACKGROUND: The R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer's disease. Mouse models accurately reproducing phenotypes observed in Alzheimer' disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer's disease. METHODS: A CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer's patients carrying the TREM2 R47H risk factor. RESULTS: Two independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant. CONCLUSIONS: The Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans

    Structure and magnetism in the bond-frustrated spinel ZnCr2Se4ZnCr_2Se_4

    Get PDF
    The crystal and magnetic structures of stoichiometric ZnCr2Se4ZnCr_2Se_4 have been investigated using synchrotron x-ray and neutron powder diffraction, muon spin relaxation (μSRμSR), and inelastic neutron scattering. Synchrotron x-ray diffraction shows a spin-lattice distortion from the cubic Fd3ˉmFd\bar3m spinel to a tetragonal I41/amdI4_1/amd lattice below TN=21KT_N = 21 K, where powder neutron diffraction confirms the formation of a helical magnetic structure with magnetic moment of 3.04(3)μB3.04(3) μ_B at 1.5 K, close to that expected for high-spin Cr3+Cr^{3+}. μSRμSR measurements show prominent local spin correlations that are established at temperatures considerably higher (100 μs^{-1}\)) muon relaxation rates are suggestive of rapid site hopping of the muons in static field. Inelastic neutron scattering measurements show a gapless mode at an incommensurate propagation vector of k = [000.4648(2)] in the low-temperature magnetic ordered phase that extends to 0.8 meV. The dispersion is modeled by a two-parameter Hamiltonian, containing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions with a Jnnn/Jnn=0.337J_{nnn}/J_{nn} = -0.337

    Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk

    Get PDF
    Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR] = 0.67 [95% CI, 0.55–0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19–0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27–0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60–80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD

    Evaluating the role of pathogenic dementia variants in posterior cortical atrophy

    Get PDF
    Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to “posterior Alzheimer's disease (AD)” pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ∼4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX

    Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic amyotrophic lateral sclerosis (sALS) is a motor neuron disease with poorly understood etiology. Results of gene expression profiling studies of whole blood from ALS patients have not been validated and are difficult to relate to ALS pathogenesis because gene expression profiles depend on the relative abundance of the different cell types present in whole blood. We conducted microarray analyses using Agilent Human Whole Genome 4 × 44k Arrays on a more homogeneous cell population, namely purified peripheral blood lymphocytes (PBLs), from ALS patients and healthy controls to identify molecular signatures possibly relevant to ALS pathogenesis.</p> <p>Methods</p> <p>Differentially expressed genes were determined by LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses. The SAFE (Significance Analysis of Function and Expression) procedure was used to identify molecular pathway perturbations. Proteasome inhibition assays were conducted on cultured peripheral blood mononuclear cells (PBMCs) from ALS patients to confirm alteration of the Ubiquitin/Proteasome System (UPS).</p> <p>Results</p> <p>For the first time, using SAFE in a global gene ontology analysis (gene set size 5-100), we show significant perturbation of the KEGG (Kyoto Encyclopedia of Genes and Genomes) ALS pathway of motor neuron degeneration in PBLs from ALS patients. This was the only KEGG disease pathway significantly upregulated among 25, and contributing genes, including <it>SOD1</it>, represented 54% of the encoded proteins or protein complexes of the KEGG ALS pathway. Further SAFE analysis, including gene set sizes >100, showed that only neurodegenerative diseases (4 out of 34 disease pathways) including ALS were significantly upregulated. Changes in <it>UBR2 </it>expression correlated inversely with time since onset of disease and directly with ALSFRS-R, implying that <it>UBR2 </it>was increased early in the course of ALS. Cultured PBMCs from ALS patients accumulated more ubiquitinated proteins than PBMCs from healthy controls in a serum-dependent manner confirming changes in this pathway.</p> <p>Conclusions</p> <p>Our study indicates that PBLs from sALS patients are strong responders to systemic signals or local signals acquired by cell trafficking, representing changes in gene expression similar to those present in brain and spinal cord of sALS patients. PBLs may provide a useful means to study ALS pathogenesis.</p

    Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study

    Get PDF
    BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10^{–2} [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10^{–3} [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing
    corecore