236 research outputs found
Epistatic relationships reveal the functional organization of yeast transcription factors
A comprehensive quantitative genetic interaction map, or E-MAP, has provided a global view of the functional interdependencies between the components of the transcriptional apparatus in budding yeast.Transcription factors that display aggravating/negative genetic interactions regulate gene expression in an independent rather than coordinated manner.Parallel/compensating relationships between regulators often characterize transcriptional circuits
Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/wTATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA-box promoters are more dynamic because TATA-binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA-box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class
GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases
The identification of genes underlying human genetic disorders requires the combination of data related to cytogenetic localization, phenotypes and expression patterns, to generate a list of candidate genes. In the field of human genetics, it is normal to perform this combination analysis by hand. We report on GeneSeeker (), a web server that gathers and combines data from a series of databases. All database searches are performed via the web interfaces provided with the original databases, guaranteeing that the most recent data are queried, and obviating data warehousing. GeneSeeker makes the same selection of candidate genes as the human geneticists would have performed, and thus reducing the time-consuming process to a few minutes. GeneSeeker is particularly well suited for syndromes in which the disease gene displays altered expression patterns in the affected tissue(s)
A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system
Covalent attachment of ubiquitin to substrates is crucial to protein degradation, transcription regulation and cell signalling. Highly specific interactions between ubiquitin-conjugating enzymes (E2) and ubiquitin protein E3 ligases fulfil essential roles in this process. We performed a global yeast-two hybrid screen to study the specificity of interactions between catalytic domains of the 35 human E2s with 250 RING-type E3s. Our analysis showed over 300 high-quality interactions, uncovering a large fraction of new E2–E3 pairs. Both within the E2 and the E3 cohorts, several members were identified that are more versatile in their interaction behaviour than others. We also found that the physical interactions of our screen compare well with reported functional E2–E3 pairs in in vitro ubiquitination experiments. For validation we confirmed the interaction of several versatile E2s with E3s in in vitro protein interaction assays and we used mutagenesis to alter the E3 interactions of the E2 specific for K63 linkages, UBE2N(Ubc13), towards the K48-specific UBE2D2(UbcH5B). Our data provide a detailed, genome-wide overview of binary E2–E3 interactions of the human ubiquitination system
Examining a possible association between human papilloma virus (HPV) vaccination and migraine: results of a cohort study in the Netherlands
Since the introduction of the bivalent human papilloma virus (HPV) vaccine in the Netherlands, migraine has been reported as a notable event in the passive safety surveillance system. Research on the association between HPV vaccination and migraine is needed. Therefore, potential migraine cases in 2008–2010 were selected from a group of general practitioners and linked to the vaccination registry. Data were analysed in three ways: (i) incidences of migraine postvaccination (2009/2010) were compared to pre-vaccination incidences (2008); (ii) in a cohort, incidence rates of migraine in vaccinated and unvaccinated girls were compared and (iii) in a self-controlled case series analysis, the relative incidence of migraine in potentially high-risk periods was compared to non-high-risk periods. Incidence rates of migraine for 12- to 16-year-old girls and boys postvaccination were slightly higher than pre-vaccination incidence rates. Incidence rate ratios (IRRs) for vaccinated compared to unvaccinated girls were not statistically significantly higher. Furthermore, the RR for migraine in the high-risk period of 6 weeks following each dose versus non-high-risk period was 4.3 (95% confidence interval (CI) 0.69–26.6) for certain migraine. Conclusion: Using different methods, no statistically significant association between HPV vaccination and incident migraine was found. However, the number of cases was low; to definitively exclude the risk, an increased sample size is needed
The genomic landscape of compensatory evolution.
Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes
Kaposiform hemangioendothelioma and tufted angioma – (epi)genetic analysis including genome-wide methylation profiling
Kaposiform hemangioendothelioma (KHE) is a locally aggressive vascular condition of childhood and is dinicopathologically related to tufted angioma (TA), a benign skin lesion.
Due to their rarity molecular data are scarce.
We investigated 7 KHE and 3 TA by comprehensive mutational analysis and genome-wide methylation profiling and compared the clustering, also with vascular malformations.
Lesions were from 7 females and 3 males. The age range was 2 months to 9 years with a median of 10 months. KHEs arose in the soft tissue of the thigh (n = 2), retroperitoneum (n = 1), thoracal/abdominal (n = 1), supraclavicular (n = 1) and neck (n = 1). One patient presented with multiple lesions without further information. Two patients developed a Kasabach-Merritt phenomenon. TAs originated in the skin of the shoulder (n = 2) and nose/forehead (n = 1).
Of the 5 KHEs and 2 TAs investigated by DNA sequencing, one TA showed a hot spot mutation in NRAS, and one KHE a mutation in RAD50.
Unsupervised hierarchical clustering analysis indicated a common methylation pattern of KHEs and TAs, which separated from the homogeneous methylation pattern of vascular malformations.
In conclusion, methylation profiling provides further evidence for KHEs and TAs potentially forming a spectrum of one entity. Using next generation sequencing, heterogeneous mutations were found in a subset of cases (2/7) without the presence of GNA14 mutations, previously reported in KHE and TA
- …