1,309 research outputs found

    Improvement of the mechanical and thermal properties of the metallized polycarbonate capacitor

    Get PDF
    Changes were studied which enable polycarbonate metallized film capacitors to withstand 500 thermal shock cycles while maintaining electrical characteristic integrity without becoming intermittent, and without losing hermeticity. The task was for metallized polycarbonate film capacitors designed to meet MIL-C-39022/9 and MIL-C-83421/1. The capacitor design improvements implemented were the insertion of a rubber washer between spray cap and end seal and the utilization of a flexible lead assembly. One hundred fifty capacitors incorporating the design improvements were manufactured and subsequently underwent 500 thermal shock cycles. One hundred forty nine capacitors survived the test. Failure analysis revealed that the lone failure was due to a poor solder joint, initially detected in pre-screening tests as having poor dissipation factor and equivalent series resistance measurement readings

    Transport and Loss of Ring Current Electrons Inside Geosynchronous Orbit During the 17 March 2013 Storm.

    Get PDF
    Ring current electrons (1-100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four-dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler-mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 R E R E, which indicates that the general dynamics of the electrons between 4.5 R E and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric field model and uncertainties in lifetimes. We show that additional mechanisms that are responsible for radial transport are required to explain the dynamics of ≥40-keV electrons, and the inclusion of the radial diffusion rates that are typically assumed in radiation belt studies leads to a better agreement with the data. The overall effect of subauroral polarization streams on the electron phase space density profiles seems to be smaller than the uncertainties in other input parameters. This study is an initial step toward understanding the dynamics of these particles inside the geostationary orbit

    Use of Most Bothersome Symptom as a Coprimary Endpoint in Migraine Clinical Trials: A Post-Hoc Analysis of the Pivotal ZOTRIP Randomized, Controlled Trial.

    Get PDF
    ObjectiveTo better understand the utility of using pain freedom and most bothersome headache-associated symptom (MBS) freedom as co-primary endpoints in clinical trials of acute migraine interventions.BackgroundAdhesive dermally applied microarray (ADAM) is an investigational system for intracutaneous drug administration. The recently completed pivotal Phase 2b/3 study (ZOTRIP), evaluating ADAM zolmitriptan for the treatment of acute moderate to severe migraine, was one of the first large studies to incorporate MBS freedom and pain freedom as co-primary endpoints per recently issued guidance by the US Food and Drug Administration. In this trial, the proportion of patients treated with ADAM zolmitriptan 3.8 mg, who were pain-free and MBS-free at 2 hours post-dose, was significantly higher than for placebo.MethodsWe undertook a post-hoc analysis of data from the ZOTRIP trial to examine how the outcomes from this trial compare to what might have been achieved using the conventional co-primary endpoints of pain relief, nausea, photophobia, and phonophobia.ResultsOf the 159 patients treated with ADAM zolmitriptan 3.8 mg or placebo, prospectively designated MBS were photophobia (n = 79), phonophobia (n = 43), and nausea (n = 37). Two-hour pain free rates in those with photophobia as the MBS were 36% for ADAM zolmitriptan 3.8 mg and 14% for placebo (P = .02). Corresponding rates for those with phonophobia as the MBS were 14% and 41% (P = .05). For those whose MBS was nausea, corresponding values were 56% and 16%, respectively (P = .01). Two-hour freedom from the MBS for active drug vs placebo were 67% vs 35% (P < .01) for photophobia, 55% vs 43% (P = .45) for phonophobia, and 89% vs 58% for nausea (P = .04). MBS freedom but not pain freedom was achieved in 28%. Only 1 patient (1%) achieved pain freedom, but not MBS freedom. The proportion with both pain and MBS freedom was highest (56%) among those whose MBS was nausea.ConclusionIn this study, the use of MBS was feasible and seemed to compare favorably to the previously required 4 co-primary endpoints

    Multi-Wavelength Variability of the Synchrotron Self-Compton Model for Blazar Emission

    Get PDF
    Motivated by recent reports of strongly correlated radio and X-ray variability in 3C279 (Grandi, etal 1995), we have computed the relative amplitudes of variations in the synchrotron flux at ν\nu and the self-Compton X-ray flux at 1 keV (R(ν)R(\nu)) for a homogeneous sphere of relativistic electrons orbiting in a tangled magnetic field. Relative to synchrotron self-Compton scattering without induced Compton scattering, stimulated scattering reduces the amplitude of R(ν)R(\nu) by as much as an order of magnitude when \tau_T \gtwid 1. When τT\tau_T varies in a fixed magnetic field, RτR_{\tau} increases monotonically from 0.01 at νo\nu_o, the self-absorption turnover frequency, to 0.50.5 at 100νo100 \nu_o. The relative amplitudes of the correlated fluctuations in the radio-mm and X-ray fluxes from 3C279 are consistent with the synchrotron self-Compton model if τT\tau_T varies in a fixed magnetic field and induced Compton scattering is the dominant source of radio opacity. The variation amplitudes are are too small to be produced by the passage of a shock through the synchrotron emission region unless the magnetic field is perpendicular to the shock front.Comment: 21 pages, 4 fig

    Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models

    Full text link
    We consider the evolution in full general relativity of a family of linearly unstable isolated spherical neutron stars under the effects of very small, perturbations as induced by the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits a type-I critical behaviour, thus confirming the conclusions reached by Liebling et al. [1] for rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out a more in-depth study providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation of the putative critical solution as a spherical solution with the unstable mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical solution will distinguish the set of subcritical models migrating to the stable branch of the models of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how the dynamics changes when the numerically perturbation is replaced by a finite-size, resolution independent velocity perturbation and show that in such cases a nearly-critical solution can be changed into either a sub or supercritical. The work reported here also lays the basis for the analysis carried in a companion paper, where the critical behaviour in the the head-on collision of two neutron stars is instead considered [2].Comment: 15 pages, 9 figure

    Hospitals and Nursing Homes in Southern Illinois

    Get PDF

    Magnetism and structure of LixCoO2 and comparison to NaxCoO2

    Full text link
    The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0 are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and 1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling is observed, increasing in strength as more Co4+ is introduced. At an x value of about 0.65, the temperature-independent contribution to the magnetic susceptibility and the electronic contribution to the specific heat are largest. Neutron diffraction analysis reveals that the lithium oxide layer expands perpendicular to the basal plane and the Li ions displace from their ideal octahedral sites with decreasing x. A comparison of the structures of the NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially with alkali content in the former but is relatively rigid in the latter. Further, the CoO6 octahedra in LixCoO2 are less distorted than those in NaxCoO2. We postulate that these structural differences strongly influence the physical properties in the two systems

    Evidence of s-wave pairing symmetry in layered superconductor Li0.68_{0.68}NbO2_2 from the specific heat measurement

    Full text link
    A high quality superconducting Li0.68_{0.68}NbO2_2 polycrystalline sample was synthesized by deintercalation of Li ions from Li0.93_{0.93}NbO2_2. The field dependent resistivity and specific heat were measured down to 0.5 K. The upper critical field Hc2(T)H_{c2} (T) is deduced from the resistivity data and Hc2(0)H_{c2}(0) is estimated to be ∼2.98\sim 2.98 T. A notable specific heat jump is observed at the superconducting transition temperature Tc∼5.0T_c \sim 5.0 K at zero field. Below TcT_c, the electronic specific heat shows a thermal activated behavior and agrees well with the theoretical result of the BCS s-wave superconductors. It indicates that the superconducting pairing in Li0.68_{0.68}NbO2_2 has s-wave symmetry.Comment: 4 pages, 5 figure
    • …
    corecore