1,309 research outputs found
Improvement of the mechanical and thermal properties of the metallized polycarbonate capacitor
Changes were studied which enable polycarbonate metallized film capacitors to withstand 500 thermal shock cycles while maintaining electrical characteristic integrity without becoming intermittent, and without losing hermeticity. The task was for metallized polycarbonate film capacitors designed to meet MIL-C-39022/9 and MIL-C-83421/1. The capacitor design improvements implemented were the insertion of a rubber washer between spray cap and end seal and the utilization of a flexible lead assembly. One hundred fifty capacitors incorporating the design improvements were manufactured and subsequently underwent 500 thermal shock cycles. One hundred forty nine capacitors survived the test. Failure analysis revealed that the lone failure was due to a poor solder joint, initially detected in pre-screening tests as having poor dissipation factor and equivalent series resistance measurement readings
Transport and Loss of Ring Current Electrons Inside Geosynchronous Orbit During the 17 March 2013 Storm.
Ring current electrons (1-100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four-dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler-mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 R E R E, which indicates that the general dynamics of the electrons between 4.5 R E and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric field model and uncertainties in lifetimes. We show that additional mechanisms that are responsible for radial transport are required to explain the dynamics of ≥40-keV electrons, and the inclusion of the radial diffusion rates that are typically assumed in radiation belt studies leads to a better agreement with the data. The overall effect of subauroral polarization streams on the electron phase space density profiles seems to be smaller than the uncertainties in other input parameters. This study is an initial step toward understanding the dynamics of these particles inside the geostationary orbit
Use of Most Bothersome Symptom as a Coprimary Endpoint in Migraine Clinical Trials: A Post-Hoc Analysis of the Pivotal ZOTRIP Randomized, Controlled Trial.
ObjectiveTo better understand the utility of using pain freedom and most bothersome headache-associated symptom (MBS) freedom as co-primary endpoints in clinical trials of acute migraine interventions.BackgroundAdhesive dermally applied microarray (ADAM) is an investigational system for intracutaneous drug administration. The recently completed pivotal Phase 2b/3 study (ZOTRIP), evaluating ADAM zolmitriptan for the treatment of acute moderate to severe migraine, was one of the first large studies to incorporate MBS freedom and pain freedom as co-primary endpoints per recently issued guidance by the US Food and Drug Administration. In this trial, the proportion of patients treated with ADAM zolmitriptan 3.8 mg, who were pain-free and MBS-free at 2 hours post-dose, was significantly higher than for placebo.MethodsWe undertook a post-hoc analysis of data from the ZOTRIP trial to examine how the outcomes from this trial compare to what might have been achieved using the conventional co-primary endpoints of pain relief, nausea, photophobia, and phonophobia.ResultsOf the 159 patients treated with ADAM zolmitriptan 3.8 mg or placebo, prospectively designated MBS were photophobia (n = 79), phonophobia (n = 43), and nausea (n = 37). Two-hour pain free rates in those with photophobia as the MBS were 36% for ADAM zolmitriptan 3.8 mg and 14% for placebo (P = .02). Corresponding rates for those with phonophobia as the MBS were 14% and 41% (P = .05). For those whose MBS was nausea, corresponding values were 56% and 16%, respectively (P = .01). Two-hour freedom from the MBS for active drug vs placebo were 67% vs 35% (P < .01) for photophobia, 55% vs 43% (P = .45) for phonophobia, and 89% vs 58% for nausea (P = .04). MBS freedom but not pain freedom was achieved in 28%. Only 1 patient (1%) achieved pain freedom, but not MBS freedom. The proportion with both pain and MBS freedom was highest (56%) among those whose MBS was nausea.ConclusionIn this study, the use of MBS was feasible and seemed to compare favorably to the previously required 4 co-primary endpoints
Multi-Wavelength Variability of the Synchrotron Self-Compton Model for Blazar Emission
Motivated by recent reports of strongly correlated radio and X-ray
variability in 3C279 (Grandi, etal 1995), we have computed the relative
amplitudes of variations in the synchrotron flux at and the self-Compton
X-ray flux at 1 keV () for a homogeneous sphere of relativistic
electrons orbiting in a tangled magnetic field. Relative to synchrotron
self-Compton scattering without induced Compton scattering, stimulated
scattering reduces the amplitude of by as much as an order of
magnitude when \tau_T \gtwid 1. When varies in a fixed magnetic
field, increases monotonically from 0.01 at , the
self-absorption turnover frequency, to at . The relative
amplitudes of the correlated fluctuations in the radio-mm and X-ray fluxes from
3C279 are consistent with the synchrotron self-Compton model if varies
in a fixed magnetic field and induced Compton scattering is the dominant source
of radio opacity. The variation amplitudes are are too small to be produced by
the passage of a shock through the synchrotron emission region unless the
magnetic field is perpendicular to the shock front.Comment: 21 pages, 4 fig
Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models
We consider the evolution in full general relativity of a family of linearly
unstable isolated spherical neutron stars under the effects of very small,
perturbations as induced by the truncation error. Using a simple ideal-fluid
equation of state we find that this system exhibits a type-I critical
behaviour, thus confirming the conclusions reached by Liebling et al. [1] for
rotating magnetized stars. Exploiting the relative simplicity of our system, we
are able carry out a more in-depth study providing solid evidences of the
criticality of this phenomenon and also to give a simple interpretation of the
putative critical solution as a spherical solution with the unstable mode being
the fundamental F-mode. Hence for any choice of the polytropic constant, the
critical solution will distinguish the set of subcritical models migrating to
the stable branch of the models of equilibrium from the set of subcritical
models collapsing to a black hole. Finally, we study how the dynamics changes
when the numerically perturbation is replaced by a finite-size, resolution
independent velocity perturbation and show that in such cases a nearly-critical
solution can be changed into either a sub or supercritical. The work reported
here also lays the basis for the analysis carried in a companion paper, where
the critical behaviour in the the head-on collision of two neutron stars is
instead considered [2].Comment: 15 pages, 9 figure
Magnetism and structure of LixCoO2 and comparison to NaxCoO2
The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0
are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and
1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling
is observed, increasing in strength as more Co4+ is introduced. At an x value
of about 0.65, the temperature-independent contribution to the magnetic
susceptibility and the electronic contribution to the specific heat are
largest. Neutron diffraction analysis reveals that the lithium oxide layer
expands perpendicular to the basal plane and the Li ions displace from their
ideal octahedral sites with decreasing x. A comparison of the structures of the
NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially
with alkali content in the former but is relatively rigid in the latter.
Further, the CoO6 octahedra in LixCoO2 are less distorted than those in
NaxCoO2. We postulate that these structural differences strongly influence the
physical properties in the two systems
Evidence of s-wave pairing symmetry in layered superconductor LiNbO from the specific heat measurement
A high quality superconducting LiNbO polycrystalline sample was
synthesized by deintercalation of Li ions from LiNbO. The field
dependent resistivity and specific heat were measured down to 0.5 K. The upper
critical field is deduced from the resistivity data and
is estimated to be T. A notable specific heat jump is
observed at the superconducting transition temperature K at zero
field. Below , the electronic specific heat shows a thermal activated
behavior and agrees well with the theoretical result of the BCS s-wave
superconductors. It indicates that the superconducting pairing in
LiNbO has s-wave symmetry.Comment: 4 pages, 5 figure
- …