2,804 research outputs found

    Terminated LDPC Convolutional Codes with Thresholds Close to Capacity

    Full text link
    An ensemble of LDPC convolutional codes with parity-check matrices composed of permutation matrices is considered. The convergence of the iterative belief propagation based decoder for terminated convolutional codes in the ensemble is analyzed for binary-input output-symmetric memoryless channels using density evolution techniques. We observe that the structured irregularity in the Tanner graph of the codes leads to significantly better thresholds when compared to corresponding LDPC block codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Effect of Substrate Roughness on Oxidation Resistance of an Aluminized Ni-Base Superalloy

    Full text link
    In the present work, it is shown that the surface preparation method used on two Ni-based superalloys prior to aluminizing chemical vapor deposition (CVD) is one of the most important factors determining the oxidation resistance of aluminized Ni-based superalloys. It was found that grit blasting the substrate surface negatively affects the oxidation resistance of the aluminized coatings. For grit blasted and aluminized IN 625, a thicker outer NiAl coating was formed compared to that of IN 738. In contrast, no effect on NiAl coating thickness was found for grit blasted and aluminized IN 738. However, a thicker interdiffusion zone (IDZ) was observed. It was shown that the systems with grit-blasted surfaces reveal worse oxidation resistance during thermal shock tests, namely, a higher mass loss was observed for both grit blasted and aluminized alloys, as compared to ground and aluminized alloys. A possible reason for this effect of remaining alumina particles originating from surface grit blasting on the diffusion processes and stress distribution at the coating/substrate is proposed.Comment: Accepted manuscript Metals 201

    Low-profile Circularly Polarized Antenna Exploiting Fabry-Perot Resonator Principle

    Get PDF
    We designed a patch antenna surrounded by a mushroom-like electromagnetic band-gap (EBG) structure and completed it by a partially reflective surface (PRS). EBG suppresses surface waves and creates the bottom wall of the Fabry-Perot (FP) resonator. PRS plays the role of a planar lens and forms the top wall of the FP resonator. The novel PRS consists of a two-layer grid exhibiting inductive and capacitive (LC) behavior which allows us to obtain a reflection phase between –108 and +180 degrees. Thanks to this PRS, we can control the height of the cavity in the range from λ/2 to λ/300. Obtained results show that the FP resonator antenna enables us to achieve a low profile and a high-gain. The patch is excited by a microstrip transmission line via the cross-slot aperture generating the circular polarization. Functionality of the described concept of the FP antenna was verified at 10 GHz. The antenna gain was 15 dBi, the impedance bandwidth 2.3% for |S11| < –10 dB, and the axial ratio bandwidth 0.6% for AR < 3.0 dB. Hence, the antenna is suitable for narrowband applications. Computer simulations show that the microwave FP antenna can be simply redesigned to serve as a source of circularly polarized terahertz waves
    • 

    corecore