27 research outputs found

    Boundary value problems for second order linear difference equations: application to the computation of the inverse of generalized Jacobi matrices

    Get PDF
    We have named generalized Jacobi matrices to those that are practically tridiagonal, except for the two final entries and the two first entries of its first andits last row respectively. This class of matrices encompasses both standard Jacobiand periodic Jacobi matrices that appear in many contexts in pure and appliedmathematics. Therefore, the study of the inverse of these matrices becomes ofspecific interest. However, explicit formulas for inverses are known only in a fewcases, in particular when the coefficients of the diagonal entries are subjected tosome restrictions.We will show that the inverse of generalized Jacobi matrices can be raisedin terms of the resolution of a boundary value problem associated with a secondorder linear difference equation. In fact, recent advances in the study of lineardifference equations, allow us to compute the solution of this kind of boundaryvalue problems. So, the conditions that ensure the uniqueness of the solution ofthe boundary value problem leads to the invertibility conditions for the matrix,whereas that solutions for suitable problems provide explicitly the entries of theinverse matrix.Peer ReviewedPostprint (author's final draft

    Gas phase reactions of organic iodine in containment conditions

    No full text
    In case of a hypothetical severe accident it is very likely that iodine at least partly deposits on painted walls of a reactor containment building. Iodine may react with painted surfaces to form organic iodine species. These organic species are a possible source of volatile iodine, which may increase the fraction of releasable iodine. Therefore, it is important to study the transport of organic iodine in containment conditions. Another question is, in which form are the organic iodides transported as gaseous molecules or as aerosol particles resulting from organic iodides reacting with radiolysis products. To answer this last question methyl iodide was fed into the EXSI facility in an air mixture. In some experiments the flow contained also humidity. The reactions took place in a quartz tube heated either to 50°C, 90°C or 120°C. UV-light was used as a source of radiation to produce ozone from oxygen. A separate generator was also applied to reach higher ozone concentrations. Nucleated aerosol particles were collected on plane filters and gaseous iodine species were trapped in trapping bottles. Aerosol mass flow rate and size distribution as well as speciation of gaseous reaction products were measured with several on-line instruments. Collected aerosol particles were analysed with SEM. It was found that the formation of aerosol particles was very fast when ozone and methyl iodide were present in the facility. Even a very low concentration of ozone produced high number concentration of particles. The measured aerosol mass concentration increased with increasing temperature and ozone concentration. Because the particle diameter was quite small (<180 nm), their settling velocity is low. Therefore, iodine containing aerosols may exist in containment atmosphere for a long period of time. Part of methyl iodide was always transported through the facility regardless of experimental conditions. All ozone was consumed in the reactions when only UV-light was used as its source. With a separate generator, ozone concentration was sufficiently high to be detected at the outlet of the facility and thus enabling the study of the reaction kinetics. The transported fractions for both methyl iodide and ozone decreased with increasing reaction temperature. The main gaseous reaction products were methanol and formaldehyde. Especially at elevated temperature other reaction products, such as formic acid and methyl formate, became important as well

    Pre-Proyecto, 1ra Etapa

    No full text
    Fil: Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Departamento de Geotermia; Argentina.Se suben aquí todas las etapas del proyecto en cuestión, y los adjuntos a las mismas.El objetivo del Proyecto consiste en la evaluación y utilización de los fluidos geotérrnicos de baja entalpía, que se encuentran en la zona del Ramal, Provincia de Jujuy, para utilizarlos en emprendirnientos económicos rentables y, contribuir de esta manera al desarrollo de las economías regionales
    corecore