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Abstract We have named generalized Jacobi matrices to those that are practically
tridiagonal, except for the two final entries and the two first entries of its first and
its last row respectively. This class of matrices encompasses both standard Jacobi
and periodic Jacobi matrices that appear in many contexts in pure and applied
mathematics. Therefore, the study of the inverse of these matrices becomes of
specific interest. However, explicit formulas for inverses are known only in a few
cases, in particular when the coefficients of the diagonal entries are subjected to
some restrictions.

We will show that the inverse of generalized Jacobi matrices can be raised
in terms of the resolution of a boundary value problem associated with a second
order linear difference equation. In fact, recent advances in the study of linear
difference equations, allow us to compute the solution of this kind of boundary
value problems. So, the conditions that ensure the uniqueness of the solution of
the boundary value problem leads to the invertibility conditions for the matrix,
whereas that solutions for suitable problems provide explicitly the entries of the
inverse matrix.

Keywords Second order difference equation · Boundary value problem ·
Generalized Jacobi matrix

1 Introduction and Preliminaries

Throughout the paper, R denotes the field of real numbers. Given a positive integer
n, we denote by Rn the real coordinate space of n dimensions. Moreover, the com-
ponents of the vector v ∈ Rn are denoted by vj , j = 1, . . . , n, i.e., v = (v1, . . . , vn)>.
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In addition, we also assume that 00 = 1 and the usual convention that empty
sums and empty products are defined as 0 and 1 respectively.

If n is a positive integer, we call generalized Jacobi matrix of order n + 2 with
coefficients {ak}nk=0, {bk}nk=0, {ck}nk=0 ⊂ R, σij ∈ R, i = 1, 2, j = 1, 2, 3, 4, to the
real square matrix M ∈Mn+2(R) of order n+ 2 with the following structure:

M =



σ11 σ12 0 · · · 0 σ13 σ14

−c0 b1 −a1 · · · 0 0 0
0 −c1 b2 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · bn−1 −an−1 0
0 0 0 · · · −cn−1 bn −an
σ21 σ22 0 · · · 0 σ23 σ24


.

Observe that these matrices are practically tridiagonal, except for the final and first
entries of the first and the last row respectively, and include the Jacobi matrices
when σ13 = σ14 = σ21 = σ22 = 0, and the periodic Jacobi matrices if σ13 = σ22 = 0
and σ14 · σ21 6= 0.

As in [22], we have chosen to write down the off-diagonal coefficients with
negative sign. This is only a convention, motivated by the relationship between
Jacobi matrices and Schrödinger operators on a path, that we will use to analyse
the invertibility of the generalized Jacobi matrix.

Notice that the coefficients a0, b0 and cn have no influence in the matrix M

and hence they can be chosen arbitrarily. In addition, we also choose arbitrarily
the value bn+1 and define an+1 = cn and cn+1 = an. In Section 2 we justify this
last choice. On the other hand, we must make also some assumptions about the
coefficients of the matrix M to avoid trivial situations or problems reducible to
others with a minor order. First of all, we always assume

rank

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
= 2, (1)

otherwise M is singular. We will also require ak 6= 0, k = 1, . . . , n and ck 6= 0,
k = 0, . . . , n−1, since in other case M is a reducible matrix and hence the inversion
problem leads to the invertibility of a matrix of lower order. Consistently with this
assumption, we also suppose that a0 and cn, and even an+1 and cn+1, are also non
null.

The matrix M is invertible if and only if for each f ∈ Rn+2 there exists u ∈ Rn+2

such that Mu = f, so u is the unique solution of the system Mu = f if and only if
satisfies that {

σ11u0 + σ12u1 + σ13un + σ14un+1 = f0,

σ21u0 + σ22u1 + σ23un + σ24un+1 = fn+1,
(2)

and moreover

−akuk+1 + bkuk − ck−1uk−1 = fk, k = 1, . . . , n. (3)

Let us show that we can recognize in the previous identities the structure of a
boundary value problem associated with a second order linear difference equation
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or, equivalently, with a Schrödinger operator on a path. This relation provides us
the main guide to develop a methodology to determine when M is nonsingular and
then, to compute its inverse. Therefore, Chapters 7 and 11 of [7] will be our main
reference.

Specifically, we consider the path whose vertices are I = {0, . . . , n+1} and define

its interior as
◦
I= {1, . . . , n} and its boundary as δ(I) = {0, n+1}. In addition, given

JJJ ⊆ I, we denote by C(JJJ) the vector space of real functions defined on I and
vanishing on I \ JJJ and by C∗(JJJ) the set of functions in C(JJJ) that are non null
at each vertex of JJJ . Therefore, we can identify C(I) with Rn+2 assigning to any
v ∈ Rn+2 the function v ∈ C(I) defined as v(k) = vk. In particular, we denote by
εk ∈ C(I) the function identified with the k-th vector of the standard basis in Rn+2,
that is, εk(k) = 1 and εk(j) = 0, otherwise. In addition, the three sequences of
coefficients {ak}n+1

k=0 , {bk}n+1
k=0 , {ck}n+1

k=0 are identified with a, c ∈ C∗(I) and b ∈ C(I).

We call conductance on the path I any function γ : I× I −→ R such that
γ(k, s) 6= 0 if and only if |k− s| = 1 and denote by Γ (I) the set of conductances on
I.

Given γ ∈ Γ (I) and q ∈ C(I), the Schrödinger operator with potential q and

conductivity γ is the linear operator Lγq : C(I) −→ C(I) defined as

Lγq (u)(k) =
∑
s∈I

γ(k, s)
(
u(k)− u(s)

)
+ q(k)u(k), k ∈ I.

Given f ∈ C(I) we called Schrödinger equation on I with data f , to the problem
of finding u ∈ C(I) satisfying

Lγq (u) = f on
◦
I . (4)

Notice that the values of f at δ(I) do not have any relevance in the above equation

and hence we could have supposed that f ∈ C(
◦
I). When f = 0, then (4) is called

homogeneous Schrödinger equation.

If we consider the conductance γ ∈ Γ (I) and the potential q ∈ C(I) defined as

γ(k, k + 1) = ak, γ(k + 1, k) = ck, k = 0, . . . , n,

q(k) = bk − ak − ck−1, k = 1, . . . , n+ 1,

and by 0 otherwise, then (3) coincide with the Schrödinger equation (4). Con-
versely, it is clear that any Schrödinger equation on I corresponds to a set of equa-
tions as (3) for the coefficients ak = γ(k, k+ 1), bk = q(k) + γ(k, k+ 1) + γ(k, k− 1)
and ck−1 = γ(k, k − 1), k = 1, . . . , n.

Finally, given σ1, σ2, σ3 and σ4 ∈ R not simultaneously null, we define boundary

linear form or linear boundary condition to the linear map c : C(I) −→ R determined
by the expression

c(u) = σ1u(0) + σ2u(1) + σ3u(n) + σ4u(n+ 1), for each u ∈ C(I).

Then, we can consider c1, c2 as the boundary conditions with coefficients σ11, σ12,
σ13, σ14 and σ21, σ22, σ23, σ24, respectively, and we denote with (c1, c2) the pair of

boundary conditions determined by the matrix C =

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
∈M2×4(R).
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With this all functional notation, (2) and (3) are equivalent to the boundary
value problem on the path I

Lγq (u) = f on
◦
I, c1(u) = f(0) and c2(u) = f(n+ 1). (5)

In terms of the boundary value problem, the invertibility conditions for M are
exactly the same conditions to ensure that the above boundary value problem
is regular, that is, it has a unique solution for each given data. Therefore, the
computation of the inverse of M can be reduced to the calculus of the solution
of boundary value problems for suitable data. Implicitly or explicitly, this is the
strategy for approaching this kind of problems, see for instance [5,12,14–16,19,21,
24,25], specially when the matrices are strictly tridiagonal. In that case, the corre-
sponding boundary value problem is a Sturm-Liouville problem and, consequently,
in almost all the works to achieve the inversion of tridiagonal matrices is reduced
to determine the solutions for initial and final value problems, i.e. [24] and [14,15].
Perhaps the most significant exception is R.K. Mallik’s work, see [19], where the
boundary vale problem is addressed directly resulting an excessively cumbersome
result. In any case, there are no works analyzing the general case of matrices not
strictly tridiagonal as M, and in specific problems, the explicit expressions of these
solutions are not obtained either.

Therefore, the aim of this work is to determine the solution of the boundary
value problem (5) for all kind of boundary conditions, which will allow us to
provide the invertibility conditions for M and the explicit expression of its inverse.
With this purpose in mind, in Section 2 we provide the main facts about the
difference equation related to the boundary value problem. Section 3 is devoted
to classifying the boundary value problems in a similar way to that of the second
order differential equations. In Section 4 we achieve the effective resolution of (5)
in terms of functional kernels that we later determine in Section 5. Next, in Section
6, the obtained solution is simplified using the previous classification. Finally, in
Section 7 we apply the results obtained in previous sections to determine the
inverse of generalized Jacobi matrices.

We remark that our methodology is based on solving initial and final value
problems and we have proved that it works for general boundary conditions. Since
our technique is strongly related to the classification of the boundary conditions,
it should must also work in the differential case. The following step in our analysis
would be the study of penta–diagonal matrices with perturbations in the corners,
which corresponds to fourth–order linear difference equations. This case is by far
much more difficult that the second order one, and only specific examples have
been discussed in the literature, see for instance [13,17,18,23]. In these works, a
general formula for the inverse matrix is not provided, but the linear system is
treated numerically. For the analytical treatment of this new problem, two main
difficulties appear for both fourth–order difference and differential equations. The
first one is that it is not enough to solve an initial and a final value problem as
in the second order case. The second one is that the boundary conditions for this
class of equations are more complex. In fact, there is no systematic classification
of these boundary conditions.
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2 Schrödinger Equations

Since the solution of a boundary value problem as the one raised in the above
section is, in particular, a solution of the corresponding Schrödinger equation (4),
that is, the second order difference equation (3), we survey in this section the main
facts about these kind of problems. Of course, we assume here that the coefficients
b ∈ C(I) and a, c ∈ C∗(I) satisfying a(n + 1) = c(n) and c(n + 1) = a(n), and
hence the associated conductance γ ∈ Γ (I) and potential q ∈ C(I), have been fixed.
Although most of the following results are known, we treat of write them in the
framework of this paper and refer the reader to [9] for the proofs of the main
results.

Every initial value problem for the Schrödinger equation has a unique solution.
Specifically, given f ∈ C(I) and m = 0, . . . , n, for any α, β ∈ R there exists a unique
u ∈ C(I) satisfying

Lγq (u) = f on
◦
I and u(m) = α, u(m+ 1) = β.

In particular, when m = n, the above problem is also known as final value problem.
If S denotes the set of solutions of the homogeneous Schrödinger equation, that

is, Lq(u) = 0 on
◦
I, then S is a vector space such that dimS = 2. While for any

f ∈ C(I), the set S(f) of solutions of the Schrödinger equation on
◦
I with data f

satisfies S(f) 6= ∅ and given u ∈ S(f), it is satisfied S(f) = u+ S. This property is
known as superposition principle.

The Wronskian or Casoratian is the skew–symmetric bilinear form w[u, v] ∈ C(I)
defined as

w[u, v](k) = det

[
u(k) v(k)

u(k + 1) v(k + 1)

]
= u(k)v(k + 1)− v(k)u(k + 1), 0 ≤ k ≤ n,

and as w[u, v](n+ 1) = w[u, v](n), see [1]. Therefore, given u, v ∈ C(I), their Wron-

skian or Casoratian, is w[u, v].
The main Wronskian property permits to identify the basis of the homogeneous

Schrödinger equation. To do this, it will be very useful to introduce the companion

function defined as

ργ(k) =
k−1∏
s=0

a(s)

c(s)
, k ∈ I.

Notice that ρ(0) = 1 and moreover ρ(k)a(k) = ρ(k + 1)c(k), k = 0, . . . , n.

Proposition 1 Given u, v ∈ S, then

a(k)w[u, v](k) = c(k − 1)w[u, v](k − 1) for any k ∈
◦
I .

Therefore, the multiplication of functions ρ aw[u, v] is constant on I and moreover it

is zero if and only if u and v are linearly dependent.

As an easy by-product of the above result, given u, v ∈ S, either w[u, v] = 0 or
w[u, v] 6= 0 for any k ∈ I. Moreover, u and v are linearly independent if and only if
their Wronskian is non null and then {u, v} forms a basis of S.
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The Green function of the Schrödinger equation is g ∈ C(I× I), defined for any
s ∈ I as g(·, s), the unique solution of the initial value problem

Lγq (u) = 0 on
◦
I and u(s) = 0, u(s+ 1) = − 1

a(s)
, 0 ≤ s ≤ n,

Lγq (u) = 0 on
◦
I and u(n) =

1

a(n+ 1)
, u(n+ 1) = 0, s = n+ 1.

Therefore, g(s, s) = 0 for any s ∈ I, whereas g(s + 1, s) = −a(s)−1 if s = 0, . . . , n
and g(n, n + 1) = a(n + 1)−1. Notice that necessarily g(s, s + 1) = c(s)−1 for any
s = 0, . . . , n and, moreover, g(n + 1, n) = −c(n + 1)−1. This relations justifies the
choice a(n+ 1) = c(n) and c(n+ 1) = a(n) for the coefficients.

Since u = g(·, k) ∈ S and v = g(·,m) ∈ S for k,m ∈ I and moreover if k 6= n+ 1

w[u, v](k) = g(k, k)g(k + 1,m)− g(k + 1, k)g(k,m) = a(k)−1g(k,m),

we have that {u, v} is a basis of S if and only if g(k,m) 6= 0. In particular,
{g(·, s), g(·, s + 1)} is a basis of S for any s = 0, . . . , n. Conversely, if {u, v} is a
basis of S, then

g(k, s) =
1

a(s)w[u, v](s)
[v(s)u(k)− u(s)v(k)], k, s ∈ I. (6)

or equivalently

g(k, s) =
ργ(s)

a(0)w[u, v](0)
[v(s)u(k)− u(s)v(k)], k, s ∈ I, (7)

where we have taken into account that a(s)ργ(s)w[u, v](s) = a(0)w[u, v](0) for any
s ∈ I.

The Green function is the main tool for the resolution of any initial value
problem, as can be consulted in detail in [9], since for any data provides a solution
of the corresponding Schrödinger equation. Specifically, for any f ∈ C(I) and any
m = 0, . . . , n, the function u ∈ C(I) given by

u(k) =

max{k,m}∑
s=min{k,m}+1

g(k, s)f(s), k ∈ I (8)

is the unique solution of the initial value problem

Lγq (u) = f on
◦
I and u(m) = u(m+ 1) = 0,

see [9, Theorem 4.3].
We end this section by pointing out that to solve the Schrödinger equation

for any data it suffices to know {u, v} a basis of the corresponding homogeneous
equation, since from it we can determine the Green function and hence all the
solutions by applying the Superposition Principle.

On the other hand, to obtain a basis of S it suffices to solve suitable initial
value problems; for instance those determined by u(m) = 0, u(m + 1) = 1 and
v(m) = 1, v(m + 1) = 0, for some m = 0, . . . , n. From these conditions we can
inductively determine u and v. However, to find explicit expressions for such a
functions is in general a very difficult task, since the obtained formulas, if they
exist, are of combinatorial nature and hence excessively cumbersome. We believe
that the clearest and unified expressions in this framework are those obtained by
the authors in [9].
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3 Classification of the boundary value problems

In this section we will classify the boundary value problems according mainly to
what elements of δ(I) = {0, n+ 1} are involved in the expression of the boundary
conditions. Hence, this classification does not depend on the coefficients of the
difference operator considered and, therefore, it is more a classification of the own
boundary conditions. From this point of view, there exist few distinctions with
the treatment of boundary conditions for second order differential equations. So,
we follow the structure of the study of this kind of problems given in [7], for us
the most complete analysis available in the literature. Following these guidelines,
we obtain here new results that could also be applied to the analysis of general
boundary value problems for second order differential equations.

Maybe, the main distinction between the discrete and the differential case
consists in that in the first one we must to take into account the value of the
functions at nodes k = 1 and k = n, since the discrete version of the derivative at
the boundary of an interval is u(0) − u(1) on the left and u(n + 1) − u(n) on the
right. For instance, any general boundary value condition involving the values of
u ∈ C(I) and its discrete derivative at 0, must be expressed as

αu(0) + β
(
u(0)− u(1)

)
= σ1u(0) + σ2u(1), where σ1 = α+ β and σ2 = −β.

As before, we consider fixed the functions b ∈ C(I), a, c ∈ C∗(I) such that
a(n + 1) = c(n) and c(n + 1) = a(n), the conductance γ ∈ Γ (I) and the potential
q ∈ C(I) determined by them and hence the corresponding Schrödinger operator
Lγq .

In addition, we also consider the pair of boundary conditions (c1, c2) determined

by the matrix C =

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
, where we assume that both conditions are

linearly independent, that is, rankC = 2.
With all these coefficients the boundary value problem on the path I, denoted by

(Lγq , c1, c2), consists in for any data f ∈ C(I) find u ∈ C(I), called solution, satisfying

Lγq (u) = f on
◦
I, c1(u) = f(0) and c2(u) = f(n+ 1). (9)

The boundary value problem is called semi–homogeneous when f ∈ C(
◦
I), that is,

when it is satisfied f(0) = f(n+ 1) = 0, and homogeneous when f = 0. Clearly the
homogeneous boundary value problem always has the null function as a solution.
In what follows, we refer this solution as the trivial solution.

The following result shows that we can restrict our study to semi–homogeneous
boundary value problems. The key fact is the linear independence of the boundary
conditions pair and consequently rankC = 2, because it implies that given any

values f(0) and f(n+1), we can always find v ∈ R4 such that Cv =
(
f(0), f(n+1)

)>
.

Notice that this property is equivalent to be surjective the linear map h : C(I) −→
R2 defined as h(u) =

(
c1(u), c2(u)

)>
.

Lemma 1 Let us consider the boundary value problem (Lγq , c1, c2) and f ∈ C(I). If

v1, v2, v3, v4 ∈ R are such that

σ11v1+σ12v2+σ13v3+σ14v4 = f(0) and σ21v1+σ22v2+σ23v3+σ24v4 = f(n+1)
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and we define g ∈ C(I) as

g = f − f(0)ε0 +
[
(v1 − v2)c(0)− v2

(
a(1) + q(1)

)]
ε1 + v2c(1)ε2

+ v3a(n− 1)εn−1 +
[
(v4 − v3)a(n)− v3

(
c(n− 1) + q(n)

)]
εn − f(n+ 1)εn+1,

then g(0) = g(n + 1) = 0 and u ∈ C(I) is a solution of the boundary value problem

with data f if and only if the function

v = u− v1ε0 − v2ε1 − v3εn − v4εn+1

is a solution of the semi–homogeneous boundary value problem with data g.

The fact that the analysis of each boundary value problem is reduced to a
semi–homogenoeus one, motivates the following definition.

Definition 1 If (c1, c2) and (̂c1, ĉ2) are two pairs of linearly independent boundary
conditions, we called them equivalent if ker c1 ∩ ker c2 = ker ĉ1 ∩ ker ĉ2. In these
circumstances, the boundary value problems (Lγq , c1, c2) and (Lγq , ĉ1, ĉ2) are also
called equivalent boundary value problems.

The following result characterizes when two pairs of linearly independent bound-
ary conditions are equivalent.

Lemma 2 If (c1, c2) and (̂c1, ĉ2) are the pairs of linearly independent boundary con-

ditions determined by the matrices C, Ĉ ∈M2×4(R), then these pairs are equivalent if

and only if it exists a nonsingular matrix N ∈M2(R) such that Ĉ = NC.

Proof Let us consider h, ĥ : C(I) −→ R2 the functions defined as h(u) =
(
c1(u), c2(u)

)>
and ĥ(u) =

(
ĉ1(u), ĉ2(u)

)>
. Clearly the pairs (c1, c2) and (̂c1, ĉ2) are equivalent if

and only if ker h = ker ĥ. Moreover, given N ∈ M2(R), then Ĉ = NC if and only if
ĥ(u) = Nh(u), for each u ∈ C(I). Therefore, if the previous identity is satisfied and
N is invertible, then ker h = ker ĥ and hence, the pairs are equivalent.

Conversely, assume that ker h = ker ĥ. Since h and ĥ are surjective we can
consider u, v, w, y ∈ C(I) such that

[h(u), h(v)] = [ĥ(w), ĥ(y)] =

[
1 0
0 1

]
.

Therefore, u and v are linearly independent and w and y are also linearly indepen-
dent. In addition, if ĥ(u) = (a, b)> and ĥ(v) = (c, d)>, then there are z1, z2 ∈ ker ĥ
such that u = aw + by + z1 and v = cw + dy + z2.

Let us consider N =

[
a c

b d

]
and suppose that there are λ, µ ∈ R such that

N

[
λ

µ

]
=

[
0
0

]
. Then, x = λu+ µv ∈ ker ĥ = ker h and hence, h(x) = (λ, µ)> = (0, 0),

that is, λ = µ = 0. Therefore, the matrix N is invertible.
If x ∈ C(I) and h(x) = (α, β)>, then it exists ẑ ∈ ker h = ker ĥ such that

x = αu+ βv + ẑ = α(aw + by) + β(cw + dy) + αz1 + βz2 + ẑ,
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which implies ĥ(x) = N

[
α

β

]
= Nh(x), since αz1 + βz2 + ẑ ∈ ker ĥ. ut

Given (c1, c2) the pair of linear independent boundary conditions determined

by the matrix C =

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
, for each 1 ≤ i < j ≤ 4 we define the matrix

Cij =

[
σ1i σ1j

σ2i σ2j

]
and the value dij = detCij . So, C = [C12 C34] and as rankC = 2,

then
∑

1≤i<j≤4

|dij | > 0.

Observe that if (̂c1, ĉ2) is the pair of linearly independent boundary conditions
determined by Ĉ ∈M2×4(R) then from Lemma 2, Ĉ is equivalent to C if and only
if it exists a nonsingular matrix N ∈M2(R) such that Ĉ = [NC12 NC34].

We are now ready for the classification of our boundary value problems. Since
the boundary conditions involve the values of the functions in the nodes 0, 1, n and
n+ 1, the classification will attend precisely to which ones are taken into account.

Definition 2 The pair of boundary conditions (c1, c2) is unilateral, or the condi-
tions c1 and c2 are unilateral, if either C34 = 0, in which case we call them initial;
or C12 = 0, in which case we call them final.

Lemma 3 Let us consider (c1, c2) a pair of unilateral conditions. Then, any equivalent

pair is also unilateral. In addition, the following properties hold:

(i) If the pair is initial, then d12 6= 0 and it is equivalent to the pair (̂c1, ĉ2), where

ĉ1(u) = u(0) and ĉ2(u) = u(1).

(ii) If the pair is final, then d34 6= 0 and it is equivalent to the pair (̂c1, ĉ2), where

ĉ1(u) = u(n) and ĉ2(u) = u(n+ 1).

The above result shows that unilateral boundary conditions are in fact initial
or final, that is, they are conditions such the ones defined in Section 2. Therefore,
the remain of this section will be devoted to study genuine boundary conditions,
that is, boundary conditions that are not unilateral.

Definition 3 Let us consider the pair of boundary conditions (c1, c2) satisfying
C12 6= 0 and C34 6= 0. The pair is called separable at node 0 if d34 = 0, and separable

at node n+ 1 if d12 = 0. The pair is simply separable if it is separable at 0 and at
n+ 1 simultaneously, that is, if d12 = d34 = 0.

Note that the hypothesis C12,C34 6= 0 determines that the pair (c1, c2) is not
unilateral. Reciprocally, if C12 6= 0 and d12 = 0, necessarily C34 6= 0 and, analo-
gously, if C34 6= 0 and d34 = 0, necessarily C12 6= 0, since rankC = 2. On the other
hand, if the pair (c1, c2) is separable, either at 0, or at n+ 1, then any equivalent
pair has the same property.

Proposition 2 The following properties hold:

(i) If (c1, c2) is separable at 0, then is equivalent to the pair determined by a ma-

trix of the form

[
a11 a12 0 0

a21 a22 a23 a24

]
, where

(
|a11| + |a12|

)(
|a23| + |a24|

)
> 0 and

a21 · a22 = 0.
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(ii) If (c1, c2) is separable at n + 1, then is equivalent to the pair determined by a

matrix of the form

[
a11 a12 a13 a14

0 0 a23 a24

]
, where

(
|a11|+ |a12|

)(
|a23|+ |a24|

)
> 0 and

a13 · a14 = 0.

(iii) If (c1, c2) is separable, then is equivalent to the pair determined by a matrix of the

form

[
a11 a12 0 0

0 0 a23 a24

]
, where (|a11|+ |a12|)(|a23 + |a24|) > 0.

Proof Since the proofs for items (i) and (ii) are identical, we will just show the
case (i).

If σ23 = σ24 = 0, then |σ13|+ |σ14| > 0 and, moreover, the linear independence
of the boundary conditions imposes |σ21| + |σ22| > 0. Then, (c1, c2) is equivalent

to (c2, c1) , which is determined by the matrix

[
σ21 σ22 0 0

σ11 σ12 σ13 σ14

]
.

If |σ23| + |σ24| > 0, since d34 = 0, it exists α ∈ R such that (σ13, σ14) =

α(σ23, σ24) and if we consider L =

[
1 −α
0 1

]
, then LC =

[
σ̂11 σ̂12 0 0
σ21 σ22 σ23 σ24

]
and,

moreover, |σ̂11|+ |σ̂12| > 0, since rankLC = 2.
Definitely, the pair (c1, c2) is equivalent to the pair determined by the matrix[

σ̂11 σ̂12 0 0

σ̂21 σ̂22 σ̂23 σ̂24

]
, where

(
|σ̂11|+ |σ̂12|

)(
|σ̂23|+ |σ̂24|

)
> 0.

On the other hand, if we consider N =

[
1 0

− σ̂21
σ̂11

1

]
when σ̂11 6= 0, while N =

[
1 0

− σ̂22
σ̂12

1

]
when σ̂12 6= 0, then

[
a11 a12 0 0

a21 a22 a23 a24

]
= N

[
σ̂11 σ̂12 0 0

σ̂21 σ̂22 σ̂23 ĉ24

]
has the required

properties.
(iii) Since the pair (c1, c2) is separable at 0, applying (i) it is equivalent to a pair

determined by a matrix of the form

[
a11 a12 0 0

a21 a22 a23 a24

]
, where

(
|a11|+ |a12|

)(
|a23|+

|a24|
)
> 0 and a21 · a22 = 0.

Since the pair (c1, c2) is also separable at n + 1, necessarily a11a22 = a12a21,
which implies that it exists α ∈ R such that (a21, a22) = α(a11, a12). If we consider

now the matrix K =

[
1 0
−α 1

]
, then K

[
a11 a12 0 0

a21 a22 a23 a24

]
has the required properties.

ut
The boundary conditions that are separable are probably the most popular

and known boundary conditions and hence they occupy a prominent place in the
analysis of this class of problems.

Definition 4 The separable conditions determined by the matrix

C =

[
σ11 σ12 0 0

0 0 σ23 σ24

]
,

where (|σ11|+ |σ12|)(|σ23|+ |σ24|) > 0 are called Sturm–Liouville conditions.
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Next we will associate to the separable conditions the usual denomination in
the literature for boundary conditions.

Definition 5 Let us consider c the linear boundary condition with coefficients
σ1, σ2, σ3 and σ4, where |σ1|+ |σ2|+ |σ3|+ |σ4| > 0.

(i) The condition c is called separable at 0 if σ3 = σ4 = 0. Moreover, if σ1 ·σ2 = 0,
then c is called Dirichlet condition at 0, interior if σ2 6= 0 and exterior if σ1 6= 0.
If σ1 · σ2 6= 0, c is called Robin condition at 0. In particular, when σ2 = −σ1, c
is called Neumann condition at 0.

(ii) The condition c is separable at n + 1 if σ1 = σ2 = 0. Moreover, if σ3 · σ4 = 0,
then c is called Dirichlet condition at n + 1, interior if σ3 6= 0 and exterior if
σ4 6= 0. If σ3 · σ4 6= 0, c is called Robin condition at n + 1. In particular, if
σ3 = −σ4, c is called Neumann condition at n+ 1.

If c is a Dirichlet boundary condition at 0, then it is equivalent to the condition
ĉ(u) = u(0) if it is exterior, or to ĉ(u) = u(1) if it is interior, and an analogous
situation arises for the Dirichlet conditions at n+1. On the other hand, if we assume
fixed the functions a, c ∈ C∗(I), if c is a Robin boundary condition at 0, then it is
equivalent to the Robin condition ĉ(u) = c1u(0)− a(0)u(1). In particular, when it
is a Neumann boundary condition at 0, it is equivalent to the Neumann condition
ĉ(u) = a(0)u(0) − a(0)u(1). Analogously, if c is a Robin boundary condition at
n+1, then it is equivalent to the Robin condition ĉ(u) = c4u(n+1)−c(n)u(n) and,
in particular, when it is a Neumann boundary condition at n+ 1, it is equivalent
to the Neumann condition ĉ(u) = c(n)u(n+ 1)− c(n)u(n).

In what follows, when we refer to Dirichlet conditions, whether they are interior
or exterior, we will be assuming that the Dirichlet conditions are the ones we have
just defined above. Similarly, when we refer to Robin or Neumann conditions in
any of the two nodes of δ(I), we will also be referring to the Robin or Neumann
conditions that we have just described.

In Proposition 2 we have shown that any separable pair of boundary conditions,
at 0 or at n+1, is equivalent to a pair in which at least one condition is separable,
at 0 or at n + 1, respectively. If the condition is separable at 0, then either it is
equivalent to the Dirichlet condition, or to the Robin condition. Analogously, if
the condition is separable at n + 1, then it is either equivalent to the Dirichlet
condition, or to Robin condition.

We will finish the classification of boundary conditions introducing what we call
of periodic type. This type of conditions also includes those that, in the continuous
case, are treated in [7, Chapter 8.3] and which we named here as periodic of second
kind.

Definition 6 The pair (c1, c2) is a set of periodic conditions if it is neither unilateral,
nor separable at 0 or at n+ 1. Hence, the pair is periodic if it is determined by a
matrix

C =

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
,

where d12 · d34 6= 0. The conditions are named periodic of first kind or periodic of

second kind if, besides, d23 = 0 or d23 6= 0, respectively.

Lemma 4 Let us consider (c1, c2) a pair of periodic conditions.
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(i) If the pair is periodic of first kind, then it is equivalent to the pair determined by a

matrix of the form

[
a11 a12 a13 a14

a21 0 0 a24

]
, where a12 · a13 · a21 · a24 6= 0.

(ii) If the pair is periodic of second kind, then it is equivalent to the pair determined by

the matrix

[
a11 −a(0) 0 a14

a21 0 −c(n) a24

]
, where a21 · a14 6= 0.

4 Regular boundary value problems

Once the boundary value problems on a finite path are classified, our purpose now
is to achieve their effective resolution. As in [4], we will focus on regular problems,
that is, in those problems for which there is only one solution. Our techniques are
directed towards the determination of the so-called resolvent kernels. As we will see,
the treatment that we develop to determine such kernels represents an extension of
more or less known results in the discrete field and also in the continuous one, but
usually exclusively referred to the treatment of Sturm–Liouville conditions. We
will show here that the process of determining the resolvent kernel and, therefore,
the resolution of the boundary value problems, always depends on an appropriate
choice of solutions of the corresponding Schrödinger homogeneous equation. The
problem statement here is slightly different and more general than the one followed
in [4], where only equations with constant coefficients were analyzed. It should also
be highlighted that our techniques are also valid for the differential case and can
be used in that context without major modifications.

In this section we consider fixed the functions b ∈ C(I), a, c ∈ C∗(I) such that
a(n+1) = c(n) and c(n+1) = a(n), the conductance γ ∈ Γ (I) and the potential q ∈
C(I) determined by them and hence the corresponding Schrödinger operator Lγq .
In addition, we also consider the pair of boundary conditions (c1, c2) determined
by the matrix C = (σij) ∈ M2×4(R), where we assume that rankC = 2, and the
values dij = σ1iσ2j − σ2iσ1j , 1 ≤ i < j ≤ 4.

According to (9), we consider (Lγq , c1, c2), the boundary value problem on the
path I

Lγq (u) = f, on
◦
I, c1(u) = f(0) and c2(u) = f(n+ 1),

and recall that this problem is equivalent to the system (??). Moreover, we must

to pay attention on the associated Schrödinger equation Lγq (u) = f on
◦
I, since

any solution of the boundary value problem is, in particular, a solution of the
Schrödinger equation. We always denote by S the space of solutions of the homo-
geneous Schrödinger equation.

Lemma 5 If {z1, z2} is a basis of solutions of the homogeneous Schrödinger equation

Lγq (u) = 0 and y is a particular solution of the Schrödinger equation with data f ∈ C(I),

then u = αz1 + βz2 + y with α, β ∈ R, is a solution of the boundary value problem

Lq(u) = f en
◦
I, c1(u) = f(0) y c2(u) = f(n+ 1),

if and only if α and β are solutions of the linear system[
c1(z1) c1(z2)
c2(z1) c2(z2)

] [
a

b

]
=

[
f(0)− c1(y)

f(n+ 1)− c2(y)

]
.
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In particular, u = αz1 + βz2 is a solution of the homogeneous boundary value problem

if and only if α and β are solutions of the homogeneous linear system[
c1(z1) c1(z2)
c2(z1) c2(z2)

] [
a

b

]
=

[
0
0

]
.

Notice that since the particular solution of the Schrödinger equation does not
depend on f(0) and on f(n+ 1), when f goes over C(I), then the right term of the
system [

c1(z1) c1(z2)
c2(z1) c2(z2)

] [
a

b

]
=

[
f(0)− c1(y)

f(n+ 1)− c2(y)

]
goes over all R2. Therefore, the boundary value problem (9) has a solution for any
f ∈ C(I) if and only if the homogeneous boundary value problem has the trivial
solution as its unique solution. Moreover, in this case the boundary value problem
has a unique solution for each data f ∈ C(I).

Definition 7 The boundary value problem (Lγq , c1, c2) is called regular if the so-
lution of the corresponding homogeneous problem is unique, and so the trivial
one.

After Lemma 5, it is clear that the matrix

[
c1(z1) c1(z2)
c2(z1) c2(z2)

]
plays a main role

in the analysis of boundary value problems and motivates the following concept,
that seems to be new not only for the discrete framework. The authors believe that
its implementation in the differentiable case would facilitate the study of regular
problems in that setting.

Definition 8 We called Wronskian of the boundary conditions pair (c1, c2) to the
function W : C(I)× C(I) −→ R defined as

W [u, v] = det

[
c1(u) c1(v)
c2(u) c2(v)

]
= c1(u)c2(v)− c1(v)c2(u), u, v ∈ C(I).

Clearly, W is a skew–symmetric bilinear form and, hence, if φ = a1u + b1v and
ψ = a2u+ b2v, then

W [φ, ψ] = W [u, v] det

[
a1 b1
a2 b2

]
. (10)

Therefore, if S is the space of solutions of the homogeneous Schrödinger equation
then either W [u, v] = 0 for any basis {u, v} of S or W [u, v] 6= 0 for any basis {u, v}
of S. Moreover we have a more precise property, as is shown in the following result.

Proposition 3 If g : I× I −→ R is the Green function of the Schrödinger equation,

then the function D : I −→ R defined as D(n+ 1) = D(n) and

D(s) =
a(0)a(s)

ργ(s+ 1)
W [g(·, s), g(·, s+ 1)], s = 0, . . . , n,

is constant and its value is given by

d12−a(0)
(
d13g(n, 0)+d14g(n+1, 0)

)
−c(0)

(
d23g(n, 1)+d24g(n+1, 1)

)
+

d34a(0)

a(n)ργ(n)
.
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Proof If we consider u = g(·, 0) y v = g(·, 1), then w[u, v](0) = a(0)−1c(0)−1 and
moreover, (6) and Proposition 1 establish that

g(·, s) =
1

a(s)w[u, v](s)

[
v(s)u−u(s)v

]
= c(0)ργ(s)

[
v(s)u−u(s)v

]
, s = 0, . . . , n+ 1.

Applying now (10), we obtain

W [g(·, s), g(·, s+ 1)] = c(0)2ργ(s+ 1)ργ(s)w[u, v](s)W [u, v]

= a(0)c(0)2ργ(s+ 1)a(s)−1w[u, v](0)W [u, v]

= c(0)ργ(s+ 1)a(s)−1W [u, v], s = 0, . . . , n,

and then, it is satisfied

D(s) = a(0)c(0)W [u, v] = D(0),

since ργ(1) = a(0)c(0)−1. On the other hand,

W [u, v] = det

[
c1(u) c1(v)
c2(u) c2(v)

]
= det

[
σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

]
0 c(0)−1

−a(0)−1 0
g(n, 0) g(n, 1)

g(n+ 1, 0) g(n+ 1, 1)

 ,
so the expression of D(0) is obtained applying the Cauchy–Binet Identity and
taking into account that from Proposition 1, w[u, v](n) = a(n)−1c(0)−1ργ(n)−1.

ut

Definition 9 We call determinant of the boundary value problem (Lγq , c1, c2) to the
value

Da,b,cc1,c2 = a(0)c(0)a(n)ργ(n)W [g(·, 0), g(·, 1)],

where g ∈ C(I× I) is the Green function of the Schrödinger equation.

Notice that from the above Proposition we have that

Da,b,cc1,c2 = a(n)ργ(n)d12 + a(0)d34 − a(0)a(n)ργ(n)
(
d13g(n, 0) + d14g(n+ 1, 0)

)
− c(0)a(n)ργ(n)

(
d23g(n, 1) + d24g(n+ 1, 1)

)
.

The next result summarizes the necessary and sufficient conditions under which
the boundary value problem is regular.

Proposition 4 The following assertions are equivalent:

(i) The boundary value problem (Lγq , c1, c2) is regular.

(ii) For any f ∈ C(I) the corresponding boundary value problem has a unique solution.

(iii) Da,b,cc1,c2 6= 0.

(iv) W [u, v] 6= 0 when {u, v} is a basis of S.

Corollary 1 If the boundary value problem (Lγq , c1, c2) is regular and u, v ∈ C(I) are

solutions of the homogeneous Schrödinger equation on
◦
I, then u and v are linearly

independent if and only if W [u, v] 6= 0.
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Definition 10 Let us consider (Lγq , c1, c2) a regular boundary value problem.

We call resolvent kernel of the boundary value problem to Ra,b,cc1,c2 : I× I −→ R
characterized by satisfying for any s ∈ I the identities

Lγq
(
Ra,b,cc1,c2(·, s)

)
= εs on

◦
I, c1

(
Ra,b,cc1,c2(·, s)

)
= εs(0), c2

(
Ra,b,cc1,c2(·, s)

)
= εs(n+ 1).

We call Green kernel of the boundary value problem to Ga,b,cc1,c2 : I× I −→ R char-

acterized by satisfying Ga,b,cc1,c2(·, s) = 0 if s ∈ δ(I) and if s ∈
◦
I by

Lγq
(
Ga,b,cc1,c2(·, s)

)
= εs on

◦
I, c1

(
Ga,b,cc1,c2(·, s)

)
= c2

(
Ga,b,cc1,c2(·, s)

)
= 0.

We call Poisson kernel of the boundary value problem to Pa,b,cc1,c2 : I× I −→ R char-

acterized by Pa,b,cc1,c2 (·, s) = 0 if s ∈
◦
I and if s ∈ δ(I) by

Lγq
(
Pa,b,cc1,c2 (·, s)

)
= 0 on

◦
I, c1

(
Pa,b,cc1,c2 (·, s)

)
= εs(0), c2

(
Pa,b,cc1,c2 (·, s)

)
= εs(n+ 1).

Observe that
{
Pa,b,cc1,c2 (·, 0), Pa,b,cc1,c2 (·, n + 1)

}
is a basis of S. Moreover, when the

boundary value problem is regular, then there is a unique resolvent kernel, a unique
Green kernel and a unique Poisson kernel, which are determined by fixing the
second variable and finding the unique solution of the previous boundary problems.
The importance of these kernels is shown in the following result.

Proposition 5 If the boundary value problem (Lγq , c1, c2) is regular, then

Ra,b,cc1,c2 = Ga,b,cc1,c2 + Pa,b,cc1,c2 .

Moreover, for any f ∈ C(I) the function

v(k) =
∑
s∈

◦
I

Ga,b,cc1,c2(k, s) f(s) =
n∑
s=1

Ga,b,cc1,c2(k, s) f(s), k ∈ I,

is the unique solution of the semi–homogeneous boundary problem

Lγq (v) = f on
◦
I, c1(v) = c2(v) = 0,

the function

z(k) =
∑
s∈δ(I)

Pa,b,cc1,c2 (k, s) f(s) = Pa,b,cc1,c2 (k, 0) f(0) + Pa,b,cc1,c2 (k, n+ 1) f(n+ 1), k ∈ I,

is the unique solution of the boundary value problem

Lγq (v) = 0 on
◦
I, c1(v) = f(0), c2(v) = f(n+ 1)

and, the function u = v + z, that is,

u(k) =
∑
s∈I

Ra,b,cc1,c2(k, s) f(s) =
n+1∑
s=0

Ra,b,cc1,c2(k, s) f(s), k ∈ I,

is the unique solution of the boundary value problem with data f

Lγq (v) = f on
◦
I, c1(v) = f(0), c2(v) = f(n+ 1).
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Proof The properties for the function z are immediate. On the other hand, since

v(k) =
n∑
s=1

Ga,b,cc1,c2(k, s) f(s) for any k ∈ I,

then

c1(v) =
n∑
s=1

c1
(
Ga,b,cc1,c2(·, s)

)
f(s) = 0 and c2(v) =

n∑
s=1

c2
(
Ga,b,cc1,c2(·, s)

)
f(s) = 0

and, moreover, for each k ∈
◦
I

Lγq (v)(k) =
n∑
s=1

Lγq
(
Ga,b,cc1,c2(·, s)

)
(k)f(s) =

n∑
s=1

εs(k)f(s) = f(k),

such that Lγq (v) = f en
◦
I. Then, the properties for the function u are an immediate

consequence. ut

5 Computation of Poisson, Green and resolvent kernels

The main results of this section are the computation of the Green, Poisson and
resolvent kernels for each regular boundary value problem.

Our main result proves that all of them are totally determined by suitable
solutions of the homogeneous Schrödinger equation and the coefficients of the
boundary conditions. To the best of the authors knowledge, this property is only
known in the case of Sturm-Liouville conditions. Therefore, our methodology ap-
pears as a novelty and also could be used to the computation of these kernels in
the differentiable case.

Throughout the section we keep the notation of the previous ones. So, we
consider fixed the functions b ∈ C(I), a, c ∈ C∗(I) such that a(n + 1) = c(n) and
c(n+1) = a(n), the conductance γ ∈ Γ (I) and the potential q ∈ C(I) determined by
them and hence the corresponding Schrödinger operator, Lγq , and its corresponding
Green function that is denoted by g. Moreover, S denotes the space of solutions

of the homogeneous Schrödinger equation Lγq (u) = 0 on
◦
I.

In addition, we also consider fixed the pair of boundary conditions (c1, c2)
determined by the matrix C = (σij) ∈M2×4(R), where we assume that rankC = 2,
and the values dij = σ1iσ2j − σ2iσ1j , 1 ≤ i < j ≤ 4.

Associated with the above functions and values, we consider the boundary value
problem (Lγq , c1, c2) and Da,b,cc1,c2 its determinant. When this problem is regular, our

objective is to compute the kernels Ga,b,cc1,c2 , Pa,b,cc1,c2 and then Ra,b,cc1,c2 .

Definition 11 Let us consider ν1, ν2, µ1, µ2 ∈ C(I) the unique solutions of the

homogeneous Schrödinger equation on
◦
I determined by the conditions

ν1(0) = −σ12, ν1(1) = σ11, ν2(n) = −σ14, ν2(n+ 1) = σ13,

µ1(0) = −σ22, µ1(1) = σ21, µ2(n) = −σ24, µ2(n+ 1) = σ23.
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We call fundamental solutions of the homogeneous Schrödinger equation on
◦
I, related to

the boundary conditions c1 and c2 or, simply, fundamental solutions to the functions

φa,b,cc1,c2 = a(n)ργ(n)ν1 + a(0)ν2 and ψa,b,cc1,c2 = a(n)ργ(n)µ1 + a(0)µ2.

Notice that µ1, ν1 are solutions of initial value problems, whereas µ2, ν2 are
solutions of final value problems, both related with the homogeneous Schrödinger
equation. Therefore, all of them depend only on the coefficients a, b and c.

The reason to choose these definitions for the fundamental solutions is shown
in the following result.

Proposition 6 If φa,b,cc1,c2 and ψa,b,cc1,c2 are the fundamental solutions of the homogeneous

Schrödinger equation on
◦
I, related to the boundary conditions c1 and c2, then

c1(φa,b,cc1,c2) = c2(ψa,b,cc1,c2 ) = 0, −c1(ψa,b,cc1,c2 ) = c2(φa,b,cc1,c2) = Da,b,cc1,c2

and, moreover,

W [φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ] = (Da,b,cc1,c2 )2 and w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0) = a(n)ργ(n)Da,b,cc1,c2 .

Proof Let {u, v} be the basis of solutions of the homogeneous Schrödinger equation
satisfying u(0) = 1, u(1) = 0, v(0) = 0 and v(1) = 1, that is, u = c(0)g(·, 1)
and v = −a(0)g(·, 0). Therefore, w[u, v](0) = 1, which implies that w[u, v](n) =
a(0)a(n)−1ργ(n)−1, whereas

W [u, v] = −a(0)c(0)W [g(·, 1), g(·, 0)] = a(n)−1ργ(n)−1Da,b,cc1,c2 .

If we prove that

φa,b,cc1,c2 = a(n)ργ(n)
(
c1(u)v − c1(v)u

)
and ψa,b,cc1,c2 = a(n)ργ(n)

(
c2(u)v − c2(v)u

)
,

then, c1(φa,b,cc1,c2) = c2(ψa,b,cc1,c2 ) = 0 and

−c1(ψa,b,cc1,c2 ) = c2(φa,b,cc1,c2) = a(n)ργ(n)W [u, v] = Da,b,cc1,c2 .

Moreover, since w is skew-symmetric we obtain

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0) = a(n)2ργ(n)2W [u, v]w[u, v](0) = a(n)ργ(n)Da,b,cc1,c2

and also
W [φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ] = a(n)2ργ(n)2W [u, v]2 =

(
Da,b,cc1,c2

)2
.

To verify the given expressions for φa,b,cc1,c2 and ψa,b,cc1,c2 , let us first observe that
c1(u)v − c1(v)u = z + x, where z and x are the solutions of the homogeneous

Schrödinger equation on
◦
I defined as

z = σ11v − σ12u

x = σ13

(
u(n)v − v(n)u

)
+ σ14

(
u(n+ 1)v − v(n+ 1)u

)
.

Since
z(0) = −σ12, z(1) = σ11

x(n) = −σ14 w[u, v](n), x(n+ 1) = σ13 w[u, v](n),
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we conclude that z = ν1 and x = w[u, v](n)ν2 = a(0)a(n)−1ργ(n)−1ν2.
On the other hand, c2(u)v − c2(v)u = ẑ + x̂, where ẑ, x̂ ∈ S are defined as

ẑ = σ21v − σ22u

x̂ = σ23

(
u(n)v − v(n)u

)
+ σ24

(
u(n+ 1)v − v(n+ 1)u

)
.

Since
ẑ(0) = −σ22, ẑ(1) = σ21

x̂(n) = −σ24 w[u, v](n), x̂(n+ 1) = σ23 w[u, v](n),

we conclude that ẑ = µ1 and x̂ = w[u, v](n)µ2 = a(0)a(n)−1ργ(n)−1µ2. ut

Corollary 2 The boundary value problem (Lγq , c1, c2) is regular if and only if the fun-

damental solutions form a basis of solutions of the homogeneous Schrödinger equation

on
◦
I. Moreover, when the problem is regular, if u ∈ C(I) is a solution of the homo-

geneous Schrödinger equation on
◦
I, then c1(u) = 0 if and only if u = λφa,b,cc1,c2 , and

analogously c2(u) = 0 if and only if u = λψa,b,cc1,c2 , where λ ∈ R.

Proof The first statement comes from Proposition 4 together with Proposition
6 and taking into account that two solutions of the homogeneous Schrödinger
equation are linearly independent if and only if its Wronskian is non null at some
vertex of I.

When the problem is regular, then u = λ1φ
a,b,c
c1,c2 + λ2ψ

a,b,c
c1,c2 , λ1, λ2 ∈ R, deter-

mines all functions u ∈ C(I) such that Lγq (u) = 0. From Proposition 6, we have

that c1(u) = −λ2D
a,b,c
c1,c2 , whereas c2(u) = λ1D

a,b,c
c1,c2 . Therefore, c1(u) = 0 if and only

if λ2 = 0 and c2(u) = 0 if and only if λ1 = 0. ut
The above result motivates that when the boundary value problem (Lγq , c1, c2)

is regular, we call fundamental basis to
{
φa,b,cc1,c2 , ψ

a,b,c
c1,c2

}
. So, in what follows, the

fundamental basis refers to this specific basis of the space S.

Definition 12 Let (Lγq , c1, c2) be a regular boundary value problem and consider{
φa,b,cc1,c2 , ψ

a,b,c
c1,c2

}
its fundamental basis. The parameters of the boundary value problem

are the following real numbers:

g11 = σ11φ
a,b,c
c1,c2(0) + σ12φ

a,b,c
c1,c2(1), g12 = σ13ψ

a,b,c
c1,c2 (n) + σ14ψ

a,b,c
c1,c2 (n+ 1),

g21 = σ21φ
a,b,c
c1,c2(0) + σ22φ

a,b,c
c1,c2(1), g22 = σ23ψ

a,b,c
c1,c2 (n) + σ24ψ

a,b,c
c1,c2 (n+ 1).

Lemma 6 Let (Lγq , c1, c2) be a regular boundary value problem. Then, the parameters

of the boundary value problem satisfy the following properties:

g11 = −
[
σ13φ

a,b,c
c1,c2(n) + σ14φ

a,b,c
c1,c2(n+ 1)

]
,

g12 = −Da,b,cc1,c2 −
[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]
,

g21 = Da,b,cc1,c2 −
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
,

g22 = −
[
σ21ψ

a,b,c
c1,c2 (0) + σ22ψ

a,b,c
c1,c2 (1)

]
.

Moreover, g12 + g21 = a(n)ργ(n)d12 − a(0)d34 and

g11g22 − g12g21 = g21D
a,b,c
c1,c2 − d12w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0) = −g12D

a,b,c
c1,c2 − d34w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n).
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Proof For the first identities, it suffices to take into account the following equalities
of Proposition 6

0 = c1(φa,b,cc1,c2) = g11 + σ13φ
a,b,c
c1,c2(n) + σ14φ

a,b,c
c1,c2(n+ 1),

Da,b,cc1,c2 = c2(φa,b,cc1,c2) = g21 + σ23φ
a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1),

−Da,b,cc1,c2 = c1(ψa,b,cc1,c2 ) = g12 + σ11ψ
a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1),

0 = c2(ψa,b,cc1,c2 ) = g22 + σ21ψ
a,b,c
c1,c2 (0) + σ22ψ

a,b,c
c1,c2 (1).

On the other hand,

g12 = w[ψa,b,cc1,c2 , ν2](n) = a(n)ργ(n)w[µ1, ν2](n) + a(0)w[µ2, ν2](n)

= a(0)w[µ1, ν2](0)− a(0)d34,

g21 = w[φa,b,cc1,c2 , µ1](0) = a(n)ργ(n)w[ν1, µ1](0) + a(0)w[ν2, µ1](0)

= a(n)ργ(n)d12 − a(0)w[µ1, ν2](0),

so g12 + g21 = a(n)ργ(n)d12−a(0)d34. The proof for the expression g11g22− g12g21

is analogous. ut
Notice that[

g11

g21

]
=

[
σ11 σ12

σ21 σ22

][
φa,b,cc1,c2(0)

φa,b,cc1,c2(1)

]
=

[
0

Da,b,cc1,c2

]
−

[
σ13 σ14

σ23 σ24

][
φa,b,cc1,c2(n)

φa,b,cc1,c2(n+ 1)

]
,

whereas[
g12

g22

]
=

[
σ13 σ14

σ23 σ24

][
ψa,b,cc1,c2 (n)

ψa,b,cc1,c2 (n+ 1)

]
= −

[
Da,b,cc1,c2

0

]
−

[
σ11 σ12

σ21 σ22

][
ψa,b,cc1,c2 (0)

ψa,b,cc1,c2 (1)

]
.

The main result in this section is to express the resolvent, Poisson and Green
kernels for a regular boundary value problem in terms of the fundamental basis.
In particular, we show that this basis basically determines the Poisson kernel.

Theorem 1 If the boundary value problem (Lγq , c1, c2) is regular, the Poisson’s kernel

is given by the identities

Pa,b,cc1,c2 (k, 0) =
−a(0)ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

and Pa,b,cc1,c2 (k, n+ 1) =
a(0)φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

,

for any k = 0, . . . , n+ 1, whereas the Green’s kernel is given by

Ga,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
ργ(s)

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s)− g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−
ργ(s)

[
g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)− g21φ

a,b,c
c1,c2(k)ψa,b,cc1,c2 (s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

,

for any s = 1, . . . , n and any k = 0, . . . , n+ 1.
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Proof Since
{
φa,b,cc1,c2 , ψ

a,b,c
c1,c2

}
is a basis of S, from (7), the Green function of the

Schrödinger equation on
◦
I is given by

g(k, s) = g00ργ(s)
[
ψa,b,cc1,c2 (k)φa,b,cc1,c2(s)− φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)

]
, k, s ∈ I.

where g00 = −
(
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

)−1
.

Therefore, if f ∈ C(I), the set of solutions of the Schrödinger equation Lγq (u) = f

on
◦
I is given by the identity

u = αφa,b,cc1,c2 + βψa,b,cc1,c2 + y, α, β ∈ R,

where according with (8), y(k) =
k∑
s=1

g(k, s)f(s), that is,

y(k) = g00ψ
a,b,c
c1,c2 (k)

k∑
s=1

φa,b,cc1,c2(s)ργ(s)f(s)ds− g00φ
a,b,c
c1,c2(k)

k∑
s=1

ψa,b,cc1,c2 (s)ργ(s)f(s)ds,

is the unique solution of the Schrödinger equation Lγq (u) = f on
◦
I satisfying the

initial conditions y(0) = y(1) = 0.
Using the properties of the fundamental solutions described in Proposition 6,

it follows that c1(u) = f(0) and c2(u) = f(n+ 1) if and only if

α =
1

Da,b,cc1,c2

[
f(n+ 1)− c2(y)

]
and β =

1

Da,b,cc1,c2

[
c1(y)− f(0)

]
.

On the other hand, ci(y) = σi3y(n)+σi4y(n+1), i = 1, 2 and using the identities
from Lemma 6, it follows that

c1(y) = g00

n∑
s=1

[
g11ψ

a,b,c
c1,c2 (s) + g12φ

a,b,c
c1,c2(s)

]
ργ(s)f(s)ds,

c2(y) = g00

n∑
s=1

[(
g21 −Da,b,cc1,c2

)
ψa,b,cc1,c2 (s) + g22φ

a,b,c
c1,c2(s)

]
ργ(s)f(s)ds.

To determine the Poisson and Green kernels, we must to substitute the function f

in the previous identities by εs, s = 0, . . . , n + 1. Also, note that as
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0) = a(n)ργ(n)Da,b,cc1,c2 , then w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n) = a(0)Da,b,cc1,c2 .

If we consider f = εs where either s = 0 or s = n+ 1, then y = 0 which implies

that c1(y) = c2(y) = 0. Therefore, if s = 0, then α = 0 and β = − 1

Da,b,cc1,c2

, whereas

if s = n+ 1, then β = 0 and α =
1

Da,b,cc1,c2

. Definitely, we have obtained that

Pa,b,cc1,c2 (k, 0) = − 1

Da,b,cc1,c2

ψa,b,cc1,c2 (k) and Pa,b,cc1,c2 (k, n+ 1) =
1

Da,b,cc1,c2

φa,b,cc1,c2(k).

If we consider f = εs, s = 1, . . . , n, then α = − c2(y)

Da,b,cc1,c2

, β =
c1(y)

Da,b,cc1,c2

, whereas

y(k) =

 0, k ≤ s,

g00ργ(s)
[
ψa,b,cc1,c2 (k)φa,b,cc1,c2(s)− φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)

]
, k ≥ s,
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or, equivalently,

y(k) = −g00ργ(s)φa,b,cc1,c2(k)ψa,b,cc1,c2 (s) + g00ργ(s)

{
φa,b,cc1,c2(k)ψa,b,cc1,c2 (s), k ≤ s,

ψa,b,cc1,c2 (k)φa,b,cc1,c2(s), k ≥ s,

that is,

y(k) = g00ργ(s)
[
φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})− φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)

]
.

On the other hand, we also have

c1(y) = g00ργ(s)
[
g11ψ

a,b,c
c1,c2 (s) + g12φ

a,b,c
c1,c2(s)

]
,

c2(y) = g00ργ(s)
[(
g21 −Da,b,cc1,c2

)
ψa,b,cc1,c2 (s) + g22φ

a,b,c
c1,c2(s)

]
,

which implies

Ga,b,cc1,c2(k, s) = g00ργ(s)
[
φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})− φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)

]
− g00ργ(s)

Da,b,cc1,c2

[(
g21 −Da,b,cc1,c2

)
φa,b,cc1,c2(k)ψa,b,cc1,c2 (s) + g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
+
g00ργ(s)

Da,b,cc1,c2

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s) + g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)

]
= g00ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

− g00ργ(s)

Da,b,cc1,c2

[
g21φ

a,b,c
c1,c2(k)ψa,b,cc1,c2 (s) + g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
+
g00ργ(s)

Da,b,cc1,c2

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s) + g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)

]
.

ut

Corollary 3 If the boundary value problem (Lγq , c1, c2) is regular, then its resolvent

kernel is determined by

Ra,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
ργ(s)

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s)− g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−
ργ(s)

[
g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)− g21φ

a,b,c
c1,c2(k)ψa,b,cc1,c2 (s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−

[(
σ12 + a(0)

)
ψa,b,cc1,c2 (k)− σ22φ

a,b,c
c1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

εs(0)

−
ργ(n+ 1)

[
σ13ψ

a,b,c
c1,c2 (k)−

(
c(n) + σ23

)
φa,b,cc1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

εs(n+ 1),

for any k, s = 0, . . . , n+ 1.
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Proof As Ra,b,cc1,c2 = Ga,b,cc1,c2 + Pa,b,cc1,c2 , the equality holds for any k = 0, . . . , n+ 1, when

s = 1, . . . , n, so the identity given for Ra,b,cc1,c2 corresponds to that obtained for the
Green kernel in Theorem 1.

Let us consider now A0, An+1 ∈ C(I) the functions obtained allowing s = 0 and
s = n+ 1 in the Green kernel expression, that is,

A0(k) = −
φa,b,cc1,c2(0)ψa,b,cc1,c2 (k)

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
(
g11ψ

a,b,c
c1,c2 (0) + g12φ

a,b,c
c1,c2(0)

)
ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

+

(
g22φ

a,b,c
c1,c2(0) + g21ψ

a,b,c
c1,c2 (0)

)
φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

= −
(
g11ψ

a,b,c
c1,c2 (0) + (g12 +Da,b,cc1,c2 )φa,b,cc1,c2(0)

)
ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

+

(
g22φ

a,b,c
c1,c2(0) + g21ψ

a,b,c
c1,c2 (0)

)
φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

and

An+1(k) = −
ργ(n+ 1)φa,b,cc1,c2(k)ψa,b,cc1,c2 (n+ 1)

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
ργ(n+ 1)

(
g11ψ

a,b,c
c1,c2 (n+ 1) + g12φ

a,b,c
c1,c2(n+ 1)

)
ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

+
ργ(n+ 1)

(
g22φ

a,b,c
c1,c2(n+ 1) + g21ψ

a,b,c
c1,c2 (n+ 1)

)
φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

= −
ργ(n+ 1)

(
g11ψ

a,b,c
c1,c2 (n+ 1) + g12φ

a,b,c
c1,c2(n+ 1)

)
ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

+
ργ(n+ 1)

(
g22φ

a,b,c
c1,c2(n+ 1) + (g21 −Da,b,cc1,c2 )ψa,b,cc1,c2 (n+ 1)

)
φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

,

where it has been used that Da,b,cc1,c2 = a(0)−1w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n). Taking into account

the identities from Definition 12 and Lemma 6, it follows

g11ψ
a,b,c
c1,c2 (0) + (g12 +Da,b,cc1,c2 )φa,b,cc1,c2(0) = −σ12w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0),

g21ψ
a,b,c
c1,c2 (0) + g22φ

a,b,c
c1,c2(0) = −σ22w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0),

(g21 −Da,b,cc1,c2 )ψa,b,cc1,c2 (n+ 1) + g22φ
a,b,c
c1,c2(n+ 1) = −σ23w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n),

g11ψ
a,b,c
c1,c2 (n+ 1) + g12φ

a,b,c
c1,c2(n+ 1) = −σ13w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n),

which implies

A0(k) =
σ12ψ

a,b,c
c1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

−
σ22φ

a,b,c
c1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

= Pa,b,cc1,c2 (k, 0) +

(
a(0) + σ12

)
ψa,b,cc1,c2 (k)− σ22φ

a,b,c
c1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)
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and also that

An+1(k) =
ργ(n+ 1)

[
σ13ψ

a,b,c
c1,c2 (k)− σ23φ

a,b,c
c1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

= Pa,b,cc1,c2 (k, n+ 1)−
a(0)φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

+
ργ(n+ 1)

[
σ13ψ

a,b,c
c1,c2 (k)− σ23φ

a,b,c
c1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

= Pa,b,cc1,c2 (k, n+ 1) +
ργ(n+ 1)

[(
σ13ψ

a,b,c
c1,c2 (k)−

(
σ23 + c(n)

)
φa,b,cc1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

,

where it has been taking into account a(n)ργ(n) = c(n)ργ(n+ 1). ut

6 Resolvent kernels of regular boundary value problems

The purpose of this section is to analyze the different boundary value problems
according to the classification we made in Section 3. Therefore, we study unilat-
eral problems, either initial or final, separable problems either at one or at both
extremes of the path and finally, periodic problems. In all cases, we establish the
specific conditions for such problems to be regular and we determine the corre-
sponding resolvent kernel. Since Green and Poisson kernels can be immediately
deduced from the expression of the resolvent kernel, we do not write down the
expressions for these last kernels.

6.1 Unilateral problems

Let us consider, first, initial unilateral boundary conditions (c1, c2), that is, such
that C34 = 0 and hence d12 6= 0.

In this case, φa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equa-

tion on
◦
I that satisfies φa,b,cc1,c2(0) = −a(n)ργ(n)σ12 and φa,b,cc1,c2(1) = a(n)ργ(n)σ11,

whereas ψa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equation on
◦
I such that ψa,b,cc1,c2 (0) = −a(n)ργ(n)σ22 and ψa,b,cc1,c2 (1) = a(n)ργ(n)σ21. Since

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0) = a(n)2ργ(n)2d12 6= 0,

the problem is regular. Moreover, g11 = g22 = g12 = 0, whereas

g21 = a(n)ργ(n)d12 = a(0)−1w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n).

Therefore, we obtain the following result.
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Proposition 7 Let (Lγq , c1, c2) be a initial unilateral problem, then it is regular and

its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

[
φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)− φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

]
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

−

[(
σ12 + a(0)

)
ψa,b,cc1,c2 (k)− σ22φ

a,b,c
c1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

εs(0)

+
ργ(n+ 1)c(n)φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

εs(n+ 1),

for any k, s = 0, . . . , n+ 1.

Let us consider now final unilateral boundary condition (c1, c2), that is, such
that C12 = 0 and hence d34 6= 0.

In this case, φa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equa-

tion on
◦
I that verifies φa,b,cc1,c2(n) = −a(0)σ14 and φa,b,cc1,c2(n + 1) = a(0)σ13, whereas

ψa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equation on
◦
I such

that ψa,b,cc1,c2 (n) = −a(0)σ24 and ψa,b,cc1,c2 (n+ 1) = a(0)σ23. Since

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n) = a(0)2d34 6= 0,

the problem is regular. Moreover, g11 = g22 = g21 = 0, whereas g12 = −a(0)d34.
Therefore, we obtain the following result.

Proposition 8 Let (Lγq , c1, c2) be a final unilateral problem, then it is regular and its

resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

[
ψa,b,cc1,c2 (k)φa,b,cc1,c2(s)− φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

]
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

−
a(0)ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

εs(0)

−
ργ(n+ 1)

[
σ13ψ

a,b,c
c1,c2 (k)−

(
c(n) + σ23

)
φa,b,cc1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

εs(n+ 1),

for each k, s = 0, . . . , n+ 1.

Note that in the case of initial unilateral boundary conditions,

Ga,b,cc1,c2(k, s) =
ργ(s)

[
φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)− φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

]
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

=

{
0, si k ≤ s,

−g(k, s), si k ≥ s,
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while when we consider final unilateral boundary conditions,

Ga,b,cc1,c2(k, s) =
ργ(s)

[
ψa,b,cc1,c2 (k)φa,b,cc1,c2(s)− φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

]
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

=

{
g(k, s), si k ≤ s,

0, si k ≥ s,

where g is the Green function of the Schrödinger equation on
◦
I.

6.2 Separable problems

Let us consider the boundary conditions pair (c1, c2) separable at 0 and more

specifically, that it is determined by the matrix

[
σ11 σ12 0 0

σ21 σ22 σ23 σ24

]
, where it is

satisfy that
(
|σ11|+ |σ12|

)(
|σ23|+ |σ24|

)
> 0 and σ21 · σ22 = 0.

In this case, φa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equa-

tion on
◦
I that verifies φa,b,cc1,c2(0) = −a(n)ργ(n)σ12 and φa,b,cc1,c2(1) = a(n)ργ(n)σ11.

Since

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0) = −a(n)ργ(n)

[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]
,

then Da,b,cc1,c2 = −
[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]
. Moreover, g11 = g12 = 0, g21 =

a(n)ργ(n)d12 and w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n) = −a(0)

[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]
.

Proposition 9 Let (Lγq , c1, c2) be a boundary value problem separable at 0, then it is

regular if and only if σ11ψ
a,b,c
c1,c2 (0) 6= −σ12ψ

a,b,c
c1,c2 (1) and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)a(n)ργ(n)
[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]
+
ργ(s)

[(
g22φ

a,b,c
c1,c2(s) + d12a(n)ργ(n)ψa,b,cc1,c2 (s)

)
φa,b,cc1,c2(k)

]
a(0)a(n)ργ(n)

[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]2
+

[(
a(0) + σ12

)
ψa,b,cc1,c2 (k)− σ22φ

a,b,c
c1,c2(k)

]
a(0)

[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

] εs(0)

−
(
σ23 + c(n)

)
φa,b,cc1,c2(k)

c(n)
[
σ11ψ

a,b,c
c1,c2 (0) + σ12ψ

a,b,c
c1,c2 (1)

]εs(n+ 1),

for each k, s = 0, . . . , n+ 1.

Let us consider the boundary conditions pair (c1, c2) separable at n+1 and it is

determined by the matrix

[
σ11 σ12 σ13 σ14

0 0 σ23 σ24

]
, where

(
|σ11|+|σ12|

)(
|σ23|+|σ24|

)
> 0

and σ13 · σ14 = 0.
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In this case, ψa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger

equation on
◦
I that verifies ψa,b,cc1,c2 (n) = −a(0)σ24 and ψa,b,cc1,c2 (n+ 1) = a(0)σ23. Since

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n) = a(0)

[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
,

then Da,b,cc1,c2 = σ23φ
a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n + 1). Moreover, g21 = g22 = 0, g12 =

−a(0)d34 and w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0) = a(n)ργ(n)

[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
.

Proposition 10 Let (Lγq , c1, c2) be the boundary value problem separable at n+1, then

it is regular if and only if σ23φ
a,b,c
c1,c2(n) 6= −σ24φ

a,b,c
c1,c2(n+ 1) and its resolvent kernel is

given by

Ra,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)a(n)ργ(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
−

ργ(s)
[
g11ψ

a,b,c
c1,c2 (s)− a(0)d34φ

a,b,c
c1,c2(s)

]
ψa,b,cc1,c2 (k)

a(0)a(n)ργ(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]2
−

(
σ12 + a(0)

)
ψa,b,cc1,c2 (k)

a(0)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]εs(0)

−

[
σ13ψ

a,b,c
c1,c2 (k)−

(
c(n) + σ23

)
φa,b,cc1,c2(k)

]
c(n)

[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

] εs(n+ 1),

for each k, s = 0, . . . , n+ 1.

Let us consider, finally, the Sturm–Liouville pair (c1, c2), that is determined by

the matrix

[
σ11 σ12 0 0

0 0 σ23 σ24

]
, where (|σ11|+ |σ12|)(|σ23 + |σ24|) > 0.

In that case, φa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger

equation on
◦
I that verifies φa,b,cc1,c2(0) = −a(n)ργ(n)σ12 and φa,b,cc1,c2(1) = a(n)ργ(n)σ11,

whereas ψa,b,cc1,c2 is the unique solution of the homogeneous Schrödinger equation on
◦
I such that ψa,b,cc1,c2 (n) = −a(0)σ24 and ψa,b,cc1,c2 (n + 1) = a(0)σ23. Moreover, g11 =
g12 = g21 = g22 = 0 and

Da,b,cc1,c2 = −σ11ψ
a,b,c
c1,c2 (0)− σ12ψ

a,b,c
c1,c2 (1) = σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1).

Proposition 11 The Sturm–Liouville boundary value problem (Lγq , c1, c2) is regular if

and only if σ11ψ
a,b,c
c1,c2 (0) 6= −σ12ψ

a,b,c
c1,c2 (1) or, equivalently, if and only if σ23φ

a,b,c
c1,c2(n) 6=

−σ24φ
a,b,c
c1,c2(n+ 1) and its resolvent kernel is determined by

Ra,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)a(n)ργ(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
−

(
σ12 + a(0)

)
ψa,b,cc1,c2 (k)

a(0)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

] εs(0)

+

(
c(n) + σ23

)
φa,b,cc1,c2(k)

c(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

] εs(n+ 1), ,

for any k, s = 0, . . . , n+ 1.
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Note that for Sturm–Liouville problems, the Green kernel can be expressed as

Ga,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)a(n)ργ(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

] ,
while the resolvent kernel can be expressed as

Ra,b,cc1,c2(k, s) =
−ργ(s)

a(0)a(n)ργ(n)
[
σ23φ

a,b,c
c1,c2(n) + σ24φ

a,b,c
c1,c2(n+ 1)

]
×
[
φa,b,cc1,c2(min{k, s}) + a(n)ργ(n)

(
σ12 + a(0)

)
εs(0)

]
×
[
ψa,b,cc1,c2 (max{k, s})− a(0)

(
c(n) + σ23

)
εs(n+ 1)

]
.

This last identity motivates us to consider a slightly reformulation of the re-
sults of the previous proposition, in order to obtain an expression of the resolvent
kernel completely analogous to Green kernel expression. For this, we consider the
functions

Φa,b,cc1,c2 =
(
a(n)ργ(n)

)−1
φa,b,cc1,c2 +

(
σ12 + a(0)

)
ε0,

Ψa,b,cc1,c2 = a(0)−1ψa,b,cc1,c2 −
(
c(n) + σ23

)
εn+1.

(11)

Then,

Lγq (Φa,b,cc1,c2) = −c(0)
(
a(0)+σ12

)
ε1 and Lγq (Ψa,b,cc1,c2 ) = a(n)

(
c(n)+σ23

)
εn on

◦
I,

and, moreover,

Φa,b,cc1,c2(0) = a(0), Φa,b,cc1,c2(1) = σ11, Ψa,b,cc1,c2 (n) = −σ24, Ψa,b,cc1,c2 (n+ 1) = −c(n).

Corollary 4 Let us consider the Sturm–Liouville boundary value problem (Lγq , c1, c2),

and Φa,b,cc1,c2 and Ψa,b,cc1,c2 the unique solutions of the Schrödinger equation on
◦
I with data

−c(0)
(
a(0) + σ12

)
ε1 and a(n)

(
c(n) + σ23

)
εn, respectively, that satisfy

Φa,b,cc1,c2(0) = a(0), Φa,b,cc1,c2(1) = σ11, Ψa,b,cc1,c2 (n) = −σ24, Ψa,b,cc1,c2 (n+ 1) = −c(n).

Then,

a(0)
(
σ11Ψ

a,b,c
c1,c2 (0) + σ12Ψ

a,b,c
c1,c2 (1)

)
= −a(n)ργ(n)

(
σ23Φ

a,b,c
c1,c2(n) + σ24Φ

a,b,c
c1,c2(n+ 1)

)
,

the problem is regular if and only if σ11Ψ
a,b,c
c1,c2 (0) 6= −σ12Ψ

a,b,c
c1,c2 (1) and its resolvent

kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)
[
σ11Ψ

a,b,c
c1,c2 (0) + σ12Ψ

a,b,c
c1,c2 (1)

] Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.
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Proof It is enough to take into account that

Φa,b,cc1,c2(k) =
(
a(n)ργ(n)

)−1
φa,b,cc1,c2(k) and Ψa,b,cc1,c2 (k) = a(0)−1ψa,b,cc1,c2 (k),

for any k = 1, . . . , n and apply the results of Proposition 11. ut

Next, we will use the expression above to describe the resolvent kernels for the
most well-known Sturm-Liouville problems. The general case expressed in Corol-
lary 4, also corresponds to Robin’s problem, that is, when both are Robin condi-
tions.

Corollary 5 If the Dirichlet boundary value problem (Lγq , c1, c2) is exterior, that is,

c1(u) = u(0) and c2(u) = u(n+ 1), then it is regular if and only if Ψa,b,cc1,c2 (0) 6= 0 or,

equivalently, if and only if Φa,b,cc1,c2(n+ 1) 6= 0 and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (0)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 6 If the Dirichlet boundary value problem (Lγq , c1, c2) is interior, that is,

c1(u) = u(1) and c2(u) = u(n), then it is regular if and only if Ψa,b,cc1,c2 (1) 6= 0 or,

equivalently, if and only if Φa,b,cc1,c2(n) 6= 0 and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (1)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 7 If the Dirichlet boundary value problem (Lγq , c1, c2) is exterior–interior,

that is, c1(u) = u(0) ans c2(u) = u(n), then it is regular if and only if Ψa,b,cc1,c2 (0) 6= 0

or, equivalently, if and only if Φa,b,cc1,c2(n) 6= 0 and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (0)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 8 If the Dirichlet boundary value problem (Lγq , c1, c2) is interior–exterior,

that is, c1(u) = u(1) and c2(u) = u(n+1), then it is regular if and only if Ψa,b,cc1,c2 (1) 6= 0

or, equivalently, if and only if Φa,b,cc1,c2(n+ 1) 6= 0 and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (1)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 9 If the Dirichlet boundary value problem (Lγq , c1, c2) is exterior–Robin,

that is, c1(u) = u(0), c2(u) = σ23u(n) + σ24u(n + 1) with σ23σ24 6= 0, then it is

regular if and only if Ψa,b,cc1,c2 (0) 6= 0 or, equivalently, if and only if σ23Φ
a,b,c
c1,c2(n) 6=

−σ24Φ
a,b,c
c1,c2(n+ 1) and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (0)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.
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Corollary 10 If the Dirichlet boundary value problem (Lγq , c1, c2) is interior–Robin,

that is, c1(u) = u(1), c2(u) = σ23u(n) + σ24u(n + 1) with σ23σ24 6= 0, then it is

regular if and only if Ψa,b,cc1,c2 (1) 6= 0 or, equivalently, if and only if σ23Φ
a,b,c
c1,c2(n) 6=

−σ24Φ
a,b,c
c1,c2(n+ 1) and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) =
ργ(s)

a(0)Ψa,b,cc1,c2 (1)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 11 If the Robin–Dirichlet boundary value problem (Lγq , c1, c2) is exterior,

that is, c1(u) = σ11u(0) + σ12u(1) with σ11σ12 6= 0, c2(u) = u(n + 1), then it is

regular if and only if Φa,b,cc1,c2(n+ 1) 6= 0, or, equivalently, if and only if σ11Ψ
a,b,c
c1,c2 (0) 6=

−σ12Ψ
a,b,c
c1,c2 (1) and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) = − ργ(s)

a(n)ργ(n)Φa,b,cc1,c2(n+ 1)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

Corollary 12 If the Robin–Dirichlet boundary value problem (Lγq , c1, c2) is interior,

that is, c1(u) = σ11u(0) +σ12u(1) with σ11σ12 6= 0, c2(u) = u(n), then it is regular if

and only if Φa,b,cc1,c2(n) 6= 0 or, equivalently, if and only if σ11Ψ
a,b,c
c1,c2 (0) 6= −σ12Ψ

a,b,c
c1,c2 (1)

and its resolvent kernel is given by

Ra,b,cc1,c2(k, s) = − ργ(s)

a(n)ργ(n)Φa,b,cc1,c2(n)
Φa,b,cc1,c2(min{k, s})Ψa,b,cc1,c2 (max{k, s}),

for any k, s = 0, . . . , n+ 1.

6.3 Periodic problems

For periodic boundary value problems, the conditions that are needed for regularity
cannot be simplified, since the functions of the fundamental basis involve values
at both ends. Therefore, we assume in both cases that the problem is regular and,
under this hypothesis, we will determine the resolving kernels.

Let us consider the periodic boundary conditions pair (c1, c2) of first kind, that

is, it is determined by the matrix

[
σ11 σ12 σ13 σ14

σ21 0 0 σ24

]
, where σ12 · σ13 · σ21 · σ24 6= 0.

Then,

g11 = σ11φ
a,b,c
c1,c2(0) + σ12φ

a,b,c
c1,c2(1), g12 = σ13ψ

a,b,c
c1,c2 (n) + σ14ψ

a,b,c
c1,c2 (n+ 1),

g21 = σ21φ
a,b,c
c1,c2(0), g22 = σ24ψ

a,b,c
c1,c2 (n+ 1).
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Proposition 12 If the periodic boundary value problem (Lγq , c1, c2) of first kind is

regular, its resolvent kernel is given by

Ra,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
ργ(s)

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s)− g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−
ργ(s)

[
g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)− g21φ

a,b,c
c1,c2(k)ψa,b,cc1,c2 (s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−
(
a(0) + σ12

)
ψa,b,cc1,c2 (k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](n)

εs(0)

−
ργ(n+ 1)

[
σ13ψ

a,b,c
c1,c2 (k)− c(n)φa,b,cc1,c2(k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

εs(n+ 1),

for any k, s = 0, . . . , n+ 1.

Let us consider the periodic boundary conditions pair (c1, c2) of second kind,

that is, it is determined by the matrix

[
σ11 −a(0) 0 σ14

σ21 0 −c(n) σ24

]
, where σ21 ·σ14 6= 0.

Then,

g11 = σ11φ
a,b,c
c1,c2(0)− a(0)φa,b,cc1,c2(1), g12 = σ14ψ

a,b,c
c1,c2 (n+ 1),

g21 = σ21φ
a,b,c
c1,c2(0), g22 = −c(n)ψa,b,cc1,c2 (n) + σ24ψ

a,b,c
c1,c2 (n+ 1).

Proposition 13 If the periodic boundary value problem (Lγq , c1, c2) of second kind is

regular, its resolvent kernel is given by

Ra,b,cc1,c2(k, s) = −
ργ(s)φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

a(0)w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

−
ργ(s)

[
g11ψ

a,b,c
c1,c2 (k)ψa,b,cc1,c2 (s)− g22φ

a,b,c
c1,c2(k)φa,b,cc1,c2(s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

−
ργ(s)

[
g12ψ

a,b,c
c1,c2 (k)φa,b,cc1,c2(s)− g21φ

a,b,c
c1,c2(k)ψa,b,cc1,c2 (s)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](n)

,

for any k, s = 0, . . . , n+ 1.

7 The inverse of a generalized Jacobi matrix

The regularity conditions of the boundary value problem (9) have been described
in previous section for each kind of conditions pair (c1, c2), and coincide with the
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invertibility conditions of the generalized Jacobi matrix of order n+ 2

M =



σ11 σ12 0 0 · · · 0 σ13 σ14

−c0 b1 −a1 0 · · · 0 0 0
0 −c1 b2 −a2 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · −cn−1 bn −an
σ21 σ22 0 0 · · · 0 σ23 σ24


.

Moreover, determining its inverse, M−1 = R = (rks), is equivalent to obtain the
inverse of the linear operator Lγq on (9), that, according to Definition 10 and
Proposition 5 is

(Lγq )−1(f)(k) =
∑
s∈I

R(k, s) f(s).

So the entries rks of matrix R correspond to the values of the resolvent kernel
R(k, s), k, s = 0, . . . , n + 1. The general expression for this kernel is described on
Corollary 3, and particular expressions of R(k, s) for fixed conditions appear all
along Section 6, but all them in terms of the Schrödinger equation’s solutions
φa,b,cc1,c2 and ψa,b,cc1,c2 , so they are not yet explicit expressions. Therefore, to obtain the
explicit values of the entries of R we just need to compute explicitly the functions
φa,b,cc1,c2 and ψa,b,cc1,c2 . To compute these solutions we will use recent advances in the
study of difference equations developed by the authors in [9], a work devoted to the
study of general second order difference equations as the one associated with the
Schrödinger equation and described in (3). In particular, in Section 7 of this paper
it has been proved that the solution of that kind of equations can be expressed as
a linear combination of the functions Pk(x, y) called k-th Chebyshev functions and
defined for any x, y ∈ C(Z) as

P0(x, y) = 1, P−1(x, y) = 0 and Pk(x, y) =

b k
2
c∑

m=0

(−1)m
∑
α∈`mk

xᾱyα, k ≥ 1. (12)

We reproduce here some brief explanations about the notation involved in (12), for
the sake of completeness. The parameter α = (α1, . . . , αp) is a binary multi–index

of order p; i.e. α is a p–tuple α = (α1, . . . , αp) ∈ {0, 1}p, and its length is defined as

|α| =
p∑
j=1

αj ≤ p. Given α ∈ {0, 1}p and a function a ∈ C(Z), we consider the value

aα =
p∏
j=1

a(j)αj . Given a positive integer p, we denote by i1, . . . , im the indices

such that 1 ≤ i1 < · · · < im ≤ p and αij = 1, j = 1, . . . ,m. We just need to consider
the binary multi–indexes α of order p in the set `p defined as

(i) `0p = {α : |α| = 0} = {(0, . . . , 0)}, for a positive integer p,

(ii) `1p = {α : αp = 0 and |α| = 1}, for p ≥ 2,

(iii) `mp = {α : αp = 0, |α| = m and ij+1 − ij ≥ 2, j = 1, . . . ,m− 1}, for p ≥ 4 and
m = 2, . . . , bp2c.
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Finally, ᾱ is the binary multi–index of the same order as α defined by

ᾱij = ᾱij+1 = 0, j = 1, . . . ,m, and ᾱi = 1 otherwise.

The name of Chebyshev function for (12) is justified due to its relation with
the usual Chebyshev polynomials of second kind, since Pk(x, y) can be identified
with them when x and y are constant sequences. In that case, P0(x, y) = 1 and
P−1(x, y) = 0 and moreover, since #`mk = (k−mm ) for any positive integer k, we
obtain that

Pk(x, y) =

b k
2
c∑

m=0

(−1)m
(
k −m
m

)
xk−2mym.

Clearly, for any k ≥ −1 and any constant sequence x, we have

Uk(x) = Pk(2x, 1) =

b k
2
c∑

m=0

(−1)m
(
k −m
m

)
(2x)k−2m,

that is known as the standard k–th Chebyshev polynomial of second kind, see [2] and
also [4,8]. Definitely, for constant sequences x and y, it is satisfied

Pk(x, y) = y
k
2

b k
2
c∑

m=0

(−1)m
(
k −m
m

)(
x
√
y

)k−2m

= y
k
2 Uk

(
x

2
√
y

)
, k ≥ 1.

Hence, we are able to compute the basis of solutions {φa,b,cc1,c2(k), ψa,b,cc1,c2 (k)} of the

homogeneous Schrödinger equation Lγq (u) = 0 on
◦
I applying the results showed in

[9] on second order difference equations, that is through a linear combination of
the Chebyshev functions Pk(b, ac) and Pk(bm, amcm), where a, b, c ∈ C(I) are the
coefficients of the second order difference equation associated to the Schrödinger
equation, and given a ∈ C(Z) and m ∈ N, the function am corresponds to the
m–shift of a, so am = a(k +m). To obtain the final expression of R(k, s), and so,
of the entries of the inverse matrix R, we only need to impose the corresponding
conditions according to the classification of the boundary value problems made in
Section 3.

This strategy has already been applied successfully for the inversion of Jacobi
matrices, that is, when σ13 = σ14 = σ21 = σ22 = 0, see [11], and also to obtain
the explicit inverse of the so–called tridiagonal (p, r)–Toeplitz matrix [10], which
are those Jacobi matrices with σ11 = b(0), σ12 = −a(0), σ23 = −c(n) and σ24 =
b(n+1), in which each diagonal is a quasi–periodic sequence, that is a(p+j) = ra(j),
b(p+ j) = rb(j) and c(p+ j) = rc(j), where p ∈ N and r ∈ R. The interested reader
can find in [3] a more specific and direct approach for the inversion of this kind of
matrices. In addition, the same technique has been used to invert some circulant
matrices that can be related to second order difference equations with constant
coefficients, see [6].

To illustrate the same strategy for a generalized Jacobi matrix, we consider the
following matrix M of order 7 as an example, and we will verify that its inverse
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corresponds to the matrix R.

M =



1 0 0 0 0 0 0
1 0 3 0 0 0 0
0 2 0 4 0 0 0
0 0 3 0 5 0 0
0 0 0 0 0 6 0
0 0 0 0 5 0 7
0 1 0 0 0 0 0


, R = M−1 =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
−1/3 1/3 0 0 0 0 0

0 0 1/4 0 0 0 −1/2
1/5 −1/5 0 1/5 0 0 0
0 0 −1/6 0 1/6 0 1/3
−1/7 1/7 0 −1/7 0 1/7 0


.

For matrix M, σ11 = σ22 = 1 and σ12 = σ13 = σ14 = σ21 = σ23 = σ24 = 0,
and then C34 = 0. Therefore, according to the classification we made in Section
3, the pair (c1, c2) corresponds to initial unilateral boundary conditions, so we
have to use the resolvent kernel for unilateral problems obtained in Proposition
7 to compute R = M−1. To do this, we first need to obtain the basis of solu-
tions {φa,b,cc1,c2(k), ψa,b,cc1,c2 (k)} of the homogeneous Schrödinger equation Lγq (u) = 0 on
◦
I = {1, . . . , 5}, which for matrix M is the uncoupled equation

(k + 2)u(k + 1) + ku(k − 1) = 0, k = 1, . . . , 5,

where a(k) = −k − 2, b(k) = 0 and c(k) = −k − 1.
Applying the result shown in [9, Theorem 7.4] to obtain the Green function for

a second order difference equation through a linear combination of the Chebyshev
functions Pk(b, ac) and Pk(b1, a1c1), the Green function for the above uncoupled
equation for any k, s = 0, . . . , 6 is

g(2k + 1, 2s) =
(−1)|k−s|

2s+ 2

[
min{k, s}+ 1

max{k, s}+ 1

]sign(k−s)

,

g(2k, 2s+ 1) =
(−1)|k−s|−1

2k + 1
,

and null otherwise. Hence, the unique solution of the initial value problem

(k + 2)u(k + 1) + ku(k − 1) = 0 on
◦
I and u(0) = α, u(1) = β,

is determined by

u(2k) =
(−1)k

2k + 1
α, k = 0, 1, 2, 3, and u(2k + 1) =

(−1)k

k + 1
β, k = 0, 1, 2;

see [9, Theorem 4.3].

Since for initial unilateral problems φa,b,cc1,c2(0) = −a(n)ργ(n)σ12 and φa,b,cc1,c2(1) =

a(n)ργ(n)σ11, whereas that ψa,b,cc1,c2 (0) = −a(n)ργ(n)σ22 and ψa,b,cc1,c2 (1) = a(n)ργ(n)σ21,
for this example

φa,b,cc1,c2(0) = ψa,b,cc1,c2 (1) = 0, ψa,b,cc1,c2 (0) = −φa,b,cc1,c2(1) = −a(5)ργ(5) = 7 · 6 = 42.

The expressions of the solution u for these initial conditions finally determine the
basis {φa,b,cc1,c2 , ψ

a,b,c
c1,c2},

φa,b,cc1,c2(2k) = 0, k = 0, 1, 2, 3, and φa,b,cc1,c2(2k + 1) = (−1)k+1 42

k + 1
, k = 0, 1, 2,

ψa,b,cc1,c2 (2k) = (−1)k
42

2k + 1
, k = 0, 1, 2, 3, and ψa,b,cc1,c2 (2k + 1) = 0, k = 0, 1, 2.
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So, we are now ready to compute the resolvent kernel associated to our initial
unilateral problem, given for any k, s = 0, . . . , 6 by

Ra,b,cc1,c2(k, s) =
ργ(s)

[
φa,b,cc1,c2(k)ψa,b,cc1,c2 (s)− φa,b,cc1,c2(min{k, s})ψa,b,cc1,c2 (max{k, s})

]
a(0)w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0)

+

[
φa,b,cc1,c2(k)− a(0)ψa,b,cc1,c2 (k)

]
w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](5)

εs(0) +
ργ(6)c(6)φa,b,cc1,c2(k)

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](0)

εs(6),

where ργ(k) =
k−1∏
s=0

a(s)

c(s)
, a(0) = −2, c(6) = −7, w[φa,b,cc1,c2 , ψ

a,b,c
c1,c2 ](0) = 1764 and

w[φa,b,cc1,c2 , ψ
a,b,c
c1,c2 ](5) = 84.

Simply by replacing then the values of φa,b,cc1,c2 and ψa,b,cc1,c2 , we obtain

Ra,b,cc1,c2(0, 0) = Ra,b,cc1,c2(1, 6) = 1, Ra,b,cc1,c2(2, 0) = −Ra,b,cc1,c2(2, 1) = −Ra,b,cc1,c2(5, 6) = −1/3,

Ra,b,cc1,c2(3, 2) = 1/4, Ra,b,cc1,c2(3, 6) = −1/2,

Ra,b,cc1,c2(4, 0) = −Ra,b,cc1,c2(4, 1) = Ra,b,cc1,c2(4, 3) = 1/5,

Ra,b,cc1,c2(5, 2) = −Ra,b,cc1,c2(5, 4) = −1/6,

Ra,b,cc1,c2(6, 0) = −Ra,b,cc1,c2(6, 1) = Ra,b,cc1,c2(6, 3) = −Ra,b,cc1,c2(6, 5) = −1/7

and all other values of Ra,b,cc1,c2(k, s), k, s = 0, . . . , 6 are null. Therefore, these values
of the resolvent kernel R(k, s) correspond to the entries rks of matrix R, as we had
announced.
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8. A. M. Encinas and M.J. Jiménez. Floquet Theory for second order linear difference equa-
tions. J. Differ. Equ. Appl., 22:353–375, 2016.

9. A. M. Encinas and M.J. Jiménez. Second order linear difference equations. J. Diff. Equ.
Appl., 24(3):305–343, 2018.



Boundary value problems and the inverse of generalized Jacobi matrices. 35
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