703 research outputs found

    The WiFeS S7 AGN survey: Current status and recent results on NGC 6300

    Full text link
    The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) is a targeted survey probing the narrow-line regions (NLRs) of a representative sample of ~140 nearby (z<0.02) Seyfert galaxies by means of optical integral field spectroscopy. The survey is based on a homogeneous data set observed using the Wide Field Spectrograph WiFeS. The data provide a 25x38 arcsec2^2 field-of-view around the galaxy centre at typically ~1.5 arcsec spatial resolution and cover a wavelength range between ~3400 - 7100 A˚\AA at spectral resolutions of ~100 km s−1^{-1} and ~50 km s−1^{-1} in the blue and red parts, respectively. The survey is primarily designed to study gas excitation and star formation around AGN, with a special focus on the shape of the AGN ionising continuum, the interaction between radio jets and the NLR gas, and the nature of nuclear LINER emission. We provide an overview of the current status of S7-based results and present new results for NGC 6300.Comment: 5 pages, 1 figure, Refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Morphology and Size Differences between Local & High Redshift Luminous Infrared Galaxies

    Full text link
    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z ~ 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z ~ 1 and a lensed galaxy at z ~ 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z > 1 for a given IR luminosity compared to their local counterparts.Comment: Accepted for publication in The Astrophysical Journal; 13 pages, 7 figures; Online materials available at http://inthanon.as.arizona.edu/~wiphu/Rujopakarn_2010

    Interaction between vortices in models with two order parameters

    Get PDF
    The interaction energy and force between widely separated strings is analyzed in a field theory having applications to superconducting cosmic strings, the SO(5) model of high-temperature superconductivity, and solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum (giving rise to strings), the other of which is unbroken in the vacuum but which could nonetheless be broken in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This effect is important if the length scale of this second order parameter is longer than that of the other fields in the problem.Comment: 11 pages, 3 figures. Minor changes in the text. Accepted for publication in Phys. Rev.

    A Survey of Atomic Carbon [C I] in High-redshift Main-Sequence Galaxies

    Full text link
    We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I](^3P_1\,-\,^{3}P_0) in far infrared-selected galaxies on the main sequence at z∼1.2z\sim1.2 in the COSMOS field. We compare our sample with a comprehensive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I](3P1^3P_1→\rightarrow3P0^3P_0) luminosity correlates on global scales with the infrared luminosity LIRL_{\rm IR} similarly to low-JJ CO transitions. We report a systematic variation of L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LIRL_{\rm IR} as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed LIRL_{\rm IR}. The L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LCO(2−1)′L'_{\rm CO(2-1)} and M[CI]M_{\rm{[C I]}}/MdustM_{\rm dust} mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of f[C I]=M[C I]/MC∼3−13f_{\rm{[C\,I]}} = M_{\rm{[C\,I]}} / M_{\rm{C}}\sim3-13% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing L'_{\rm [C\,I]^3P_1\,-\, ^3P_0} and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical αCO\alpha_{\rm CO} and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.Comment: 14 pages + Appendix. Accepted for publication in ApJ. All the data tables in Appendix will be also released in electronic forma

    Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at z>1

    Get PDF
    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two hour exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.Comment: 7 pages, 4 figures. Accepted to ApJ Letter
    • …
    corecore