1,262 research outputs found
The influence of potassium on core and geodynamo evolution
We model the thermal evolution of the core and mantle using a parametrized convection scheme, and calculate the entropy available to drive the geodynamo as a function of time. The cooling of the core is controlled by the rate at which the mantle can remove heat. Rapid core cooling favours the operation of a geodynamo but creates an inner core that is too large; slower cooling reduces the inner core size but makes a geodynamo less likely to operate. Introducing potassium into the core retards inner core growth and provides an additional source of entropy. For our nominal model parameters, a core containing approximate to 400 ppm potassium satisfies the criteria of present-day inner core size, surface heat flux, mantle temperature and cooling rate, and positive core entropy production.We have identified three possibilities that may allow the criteria to be satisfied without potassium in the core. (1) The core thermal conductivity is less than half the generally accepted value of 50 W m(-1) K-1. (2) The core solidus and adiabat are significantly colder and shallower than results from shock experiments and ab initio simulations indicate. (3) The core heat flux has varied by no more than a factor of 2 over Earth history.
All models we examined with the correct present-day inner core radius have an inner core age of < 1.5 Gyr; prior to this time the geodynamo was sustained by cooling and radioactive heat production within a completely liquid core
A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models
Idealized models or emulators of volcanic aerosol forcing have been widely used to reconstruct the spatiotemporal evolution of past volcanic forcing. However, existing models, including the most recently developed Easy Volcanic Aerosol (EVA; Toohey et al., doi: 10.5194/gmd‐2016‐83), (i) do not account for the height of injection of volcanic SO urn:x-wiley:jgrd:media:jgrd55987:jgrd55987-math-0001; (ii) prescribe a vertical structure for the forcing; and (iii) are often calibrated against a single eruption. We present a new idealized model, EVA_H, that addresses these limitations. Compared to EVA, EVA_H makes predictions of the global mean stratospheric aerosol optical depth that are (i) similar for the 1979–1998 period characterized by the large and high‐altitude tropical SO urn:x-wiley:jgrd:media:jgrd55987:jgrd55987-math-0002 injections of El Chichón (1982) and Mount Pinatubo (1991); (ii) significantly improved for the 1998–2015 period characterized by smaller eruptions with a large variety of injection latitudes and heights. Compared to EVA, the sensitivity of volcanic forcing to injection latitude and height in EVA_H is much more consistent with results from climate models that include interactive aerosol chemistry and microphysics, even though EVA_H remains less sensitive to eruption latitude than the latter models. We apply EVA_H to investigate potential biases and uncertainties in EVA‐based volcanic forcing data sets from phase 6 of the Coupled Model Intercomparison Project (CMIP6). EVA and EVA_H forcing reconstructions do not significantly differ for tropical high‐altitude volcanic injections. However, for high‐latitude or low‐altitude injections, our reconstructed forcing is significantly lower. This suggests that volcanic forcing in CMIP6 last millenium experiments may be overestimated for such eruptions
A new volcanic stratospheric sulfate aerosol forcing emulator (EVA_H): Comparison with interactive stratospheric aerosol models.
Idealized models or emulators of volcanic aerosol forcing have been widely used to reconstruct the spatio‐temporal evolution of past volcanic forcing. However, existing models, including the most recently developed Easy Volcanic Aerosol (EVA, Toohey et al. (2016): i) do not account for the height of injection of volcanic SO2; ii) prescribe a vertical structure for the forcing; and iii) are \NEW{often} calibrated against a single eruption.
We present a new idealized model, EVA_H, that addresses these limitations. Compared to EVA, EVA_H makes predictions of the global mean stratospheric aerosol optical depth that are: i) similar for the 1979‐1998 period characterized by the large and high‐altitude tropical SO2 injections of El Chichón (1982) and Mt. Pinatubo (1991); ii) significantly improved for the 1998‐2015 period characterized by smaller eruptions with a large variety of injection latitudes and heights. Compared to EVA, the sensitivity of volcanic forcing to injection latitude and height in EVA_H is much more consistent with results from climate models that include interactive aerosol chemistry and microphysics, even though EVA_H remain less sensitive to eruption latitude than the latter models.
We apply EVA_H to investigate potential biases and uncertainties in EVA‐based volcanic forcing datasets from phase 6 of the Coupled Model Intercomparison Project (CMIP6). EVA and EVA_H forcing reconstructions do not significantly differ for tropical high‐altitude volcanic injections. However, for high‐latitude or low altitude injections, our reconstructed forcing is significantly lower. This suggests that volcanic forcing in CMIP6 last millenium experiments may be overestimated for such eruptions.Includes NERC
Recommended from our members
Melting of nickel clusters
The meltinglike phenomenon in Ni{sub n}, n = 19,20,55, clusters is studied using microcanonical molecular dynamics simulations. The interaction between the atoms in the clusters is modelled by a size-dependent Gupta-like potential that incorporates many-body effects. The clusters display the ``usual`` stages in their meltinglike transition, which characterize also Lennard-Jones (e.g., noble gas) and ionic clusters. In addition, Ni{sub 20} passes through a so-called premelting stage found earlier also for Ni{sub 14}. 11 ref., 3 figs
Comparing three short questionnaires to detect psychosocial dysfunction among primary school children: a randomized method
BACKGROUND: Good questionnaires are essential to support the early identification of children with psychosocial dysfunction in community based settings. Our aim was to assess which of three short questionnaires was most suitable for this identification among school-aged children METHODS: A community-based sample of 2,066 parents of children aged 7-12 years (85% of those eligible) filled out the Child Behavior Checklist (CBCL) and - randomly determined - one of three questionnaires to be compared: the Strengths and Difficulties Questionnaire with Impact Supplement (SDQ), the Pediatric Symptom Checklist (PSC) and the PSYBOBA, a Dutch-origin questionnaire. Preventive Child Healthcare professionals assessed children's psychosocial functioning during routine health examinations. We assessed the scale structure (by means of Structural Equation Modelling), validity (correlation coefficients, sensitivity and specificity) and usability (ratings by parents and professionals) of each questionnaire and the degree to which they could improve the identification based only on clinical assessment (logistic regression). RESULTS: For the three questionnaires, Cronbach's alphas varied between 0.80 and 0.89. Sensitivities for a clinical CBCL at a cut off point with specificity = 0.90 varied between 0.78 and 0.86 for the three questionnaires. Areas under the Receiver Operating Curve, using the CBCL as criterion, varied between 0.93 and 0.96. No differences were statistically significant. All three questionnaires added information to the clinical assessment. Odds ratios (95% confidence intervals) for added information were PSC: 29.3 (14.4-59.8), SDQ: 55.0 (23.1-131.2) and PSYBOBA: 68.5 (28.3-165.6). Parents preferred the SDQ and PSYBOBA. Preventive Child Health Care professionals preferred the SDQ. CONCLUSIONS: This randomized comparison of three questionnaires shows that each of the three questionnaires can improve the detection of psychosocial dysfunction among children substantially
Structure and stability of finite gold nanowires
Finite gold nanowires containing less than 1000 atoms are studied using the
molecular dynamics simulation method and embedded atom potential. Nanowires
with the face-centered cubic structure and the (111) oriented cross-section are
prepared at T=0 K. After annealing and quenching the structure and vibrational
properties of nanowires are studied at room temperature. Several of these
nanowires form multi-walled structures of lasting stability. They consist of
concentrical cylindrical sheets and resemble multi-walled carbon nanotubes.
Vibrations are investigated by diagonalization of the dynamical matrix. It was
found that several percents of vibrational modes are unstable because of
uncompleted restructuring of initial fcc nanowires.Comment: 4 figures in gif forma
Magnetism in small bimetallic Mn-Co clusters
Effects of alloying on the electronic and magnetic properties of
MnCo (==2-5; =0-) and MnCo nanoalloy
clusters are investigated using the density functional theory (DFT). Unlike the
bulk alloy, the Co-rich clusters are found to be ferromagnetic and the magnetic
moment increases with Mn-concentration, and is larger than the moment of pure
Co clusters of same size. For a particular sized cluster the magnetic
moment increases by 2 /Mn-substitution, which is found to be independent
of the size and composition. All these results are in good agreement with
recent Stern-Gerlach (SG) experiments [Phys. Rev. B {\bf 75}, 014401 (2007) and
Phys. Rev. Lett. {\bf 98}, 113401 (2007)]. Likewise in bulk MnCo
alloy, the local Co-moment decreases with increasing Mn-concentration.Comment: 11 pages, 15 figures. To appear in Physical Review
- …