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Abstract18

Idealized models or emulators of volcanic aerosol forcing have been widely used to re-19

construct the spatio-temporal evolution of past volcanic forcing. However, existing mod-20

els, including the most recently developed Easy Volcanic Aerosol (EVA, Toohey et al.21

(2016)): i) do not account for the height of injection of volcanic SO2; ii) prescribe a ver-22

tical structure for the forcing; and iii) are often calibrated against a single eruption.23

We present a new idealized model, EVA H, that addresses these limitations. Com-24

pared to EVA, EVA H makes predictions of the global mean stratospheric aerosol op-25

tical depth that are: i) similar for the 1979-1998 period characterized by the large and26

high-altitude tropical SO2 injections of El Chichón (1982) and Mt. Pinatubo (1991); ii)27

significantly improved for the 1998-2015 period characterized by smaller eruptions with28

a large variety of injection latitudes and heights. Compared to EVA, the sensitivity of29

volcanic forcing to injection latitude and height in EVA H is much more consistent with30

results from climate models that include interactive aerosol chemistry and microphysics,31

even though EVA H remain less sensitive to eruption latitude than the latter models.32

We apply EVA H to investigate potential biases and uncertainties in EVA-based33

volcanic forcing datasets from phase 6 of the Coupled Model Intercomparison Project34

(CMIP6). EVA and EVA H forcing reconstructions do not significantly differ for trop-35

ical high-altitude volcanic injections. However, for high-latitude or low altitude injec-36

tions, our reconstructed forcing is significantly lower. This suggests that volcanic forc-37

ing in CMIP6 last millenium experiments may be overestimated for such eruptions.38

1 Introduction39

Stratospheric volcanic sulfate aerosol radiative forcing (volcanic forcing hereafter)40

is a major driver of Earth’s climate variability. Volcanic eruptions can inject sulfur diox-41

ide (SO2) into the stratosphere and form long-lived (1-3 years) sulfate aerosol that mod-42

ify Earth’s radiative balance, causing a net cooling at the surface and affecting major43

modes of climate variability (e.g. Robock (2000); Timmreck (2012); Kremser et al. (2016)).44

Recently, it has emerged that even relatively small eruptions (injecting less than around45

1 teragram (Tg) of SO2) of the early 21st century exert small but significant radiative46

forcing (e.g. Schmidt et al. (2018)) and have a statistically discernible cooling effect on47

sea surface and tropospheric temperatures (Santer et al., 2015).48

Models are key tools to reconstruct past volcanic impacts on climate and societies,49

as well as to predict the impacts of future volcanic eruptions. Interactive stratospheric50

aerosol models (e.g. Timmreck et al. (2018)) predict the full life cycle of volcanic sul-51

fate aerosol, and the associated radiative and climate response following an injection of52

volcanic SO2 into the atmosphere. However, there is a large spread among the forcing53

predicted by these models for a specified volcanic SO2 injection (e.g. Zanchettin et al.54

(2016)). This inter-model uncertainty adds to intra-model uncertainties as well as un-55

certainties related to constraining eruption source parameters, e.g., the mass of SO2 and56

eruption latitude reconstructed from ice cores when investigating the impacts of past erup-57

tions (Toohey & Sigl, 2017; Marshall et al., 2018). Given the computational cost of in-58

teractive stratospheric aerosol models, exploring how the propagation of model and source59

parameter uncertainties affect the assessment of the climate response to a volcanic erup-60

tion is challenging and requires significant efforts such as model intercomparison exer-61

cises (e.g. Zanchettin et al. (2016); Timmreck et al. (2018)).62

Another class of models consist of idealized models or “emulators” of volcanic aerosol63

evolution which have been developed to reproduce the spatiotemporal evolution of vol-64

canic aerosol and associated perturbations of atmospheric optical properties, e.g. using65

constraints from ice-cores on the timing and mass of sulfur injected by past eruptions66

(e.g. Grieser and Schonwiese (1999); Amman et al. (2003); Gao et al. (2008); Crowley67
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and Unterman (2013); Toohey and Sigl (2017)) or scenarios of future eruptions (Ammann68

& Naveau, 2010; Bethke et al., 2017). Grieser and Schonwiese (1999), Amman et al. (2003),69

Gao et al. (2008) and Toohey and Sigl (2017) use emulators based on box models, where70

each box corresponds to a latitudinal region of the stratosphere. For a prescribed sul-71

fur injection in one of the boxes, the evolution of the mass of sulfate aerosol is governed72

by timescale(s) for: i) the production of sulfate from SO2; ii) the mixing between the boxes;73

and iii) the loss of aerosol to the troposphere. Aerosol properties like stratospheric aerosol74

optical depth (SAOD) and effective radius are scaled from the mass of sulfate in the boxes.75

These models generally rely on only a few parameters and are computationally inexpen-76

sive so that conducting sensitivity studies to explore uncertainty propagation is straight-77

forward.78

The most recently developed idealized model of volcanic forcing is the Easy Vol-79

canic Aerosol model (EVA, Toohey et al. (2016)). Recent reconstructions of volcanic aerosol80

properties following the Mt. Pinatubo 1991 eruption were used to calibrate the model.81

EVA also used Gaussian shape functions to produce a realistic latitudinal distribution82

of extinction whereas most previous models had step-like latitudinal distributions. How-83

ever, like all idealized models of volcanic forcing currently available, EVA has two im-84

portant limitations:85

1. The vertical structure of the forcing produced by the model does not depend on86

characteristics of volcanic sulfur injections, in particular plume height.87

2. It is calibrated using data from the 1991 Mt. Pinatubo eruption. Given the sen-88

sitivity of the relationship between the erupted sulfur mass and the subsequent89

volcanic forcing on eruption source parameters (such as the latitude or altitude90

of injection, e.g. Marshall et al. (2019), Toohey et al. (2019)), one should be care-91

ful when applying this model to other eruptions. In particular, most eruptions whose92

plume reaches the stratosphere inject order(s) of magnitude less sulfur than Mt.93

Pinatubo, with injections between 10 and 20 km altitude (instead of ca. 20-25km94

for Mt. Pinatubo), and commonly occur in high latitudes instead of the tropics95

(Carn et al., 2016).96

Consequently, the major objective of this study is to extend the EVA methodol-97

ogy to develop EVA H (with “H” standing for height), an idealized model of volcanic98

aerosol forcing: i) accounting for plume height to determine the forcing resulting from99

a sulfur injection; ii) predicting the vertical structure of aerosol extinction; and iii) cal-100

ibrated against eruptions spanning a large range of mass of erupted sulfur, plume height101

and latitude. We compare outputs of EVA H to EVA and to interactive stratospheric102

aerosol models. We also provide example applications to improve reconstructions of past103

volcanic forcing and provide fast response to present/future eruptions.104

2 Data and model105

2.1 Data106

Primary datasets used to calibrate the model107

Our strategy is to calibrate the model so that its output best reproduces observa-108

tions of atmospheric optical properties given an input inventory of volcanic sulfur emis-109

sion estimates. For optical properties, we use the Global Space-based Stratospheric Aerosol110

Climatology (GloSSAC, version 1.1, Thomason et al. (2018)), which is the National Aero-111

nautics and Space Administration latest reconstruction of extinction from satellite data.112

It contains latitude and altitude dependent extinction at 525 nm from 1979 to 2016. Typ-113

ical uncertainties on extinction coefficients are about 10% (Thomason et al., 2018), al-114

though uncertainties associated with the processing and combination of the various ob-115

servational datasets used in GloSSAC remains to be precisely quantified. In addition,116
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whereas 1984-2005 climatological tropopause height from the Modern-Era Retrospective117

Analysis for Research and Applications (MERRA, Rienecker et al. (2011)) are provided118

with the GloSSAC dataset, we use time-varying tropopause height from the NCEP/NCAR119

reanalysis (Kalnay et al., 1996). This enables us to account for trends related to climate120

change (Santer et al., 2003) and the large variability of tropopause height at high lat-121

itudes when calculating stratospheric aerosol optical depths (see Figure S1 for a com-122

parison of GloSSAC versions and tropopause height treatment).123

For the volcanic sulfur emission inventory, we use data reported by Carn et al. (2016)124

who report the date, location, mass of SO2 and altitude of volcanic emissions over 1978-125

2015. Typical uncertainties for the total mass of SO2 injected by an eruption range from126

20% to up to 50-100% (Carn et al., 2016), while typical uncertainties on the injection127

height are up to 20% (e.g. Carboni et al. (2016); Aubry et al. (2017)).128

2.2 Model structure129

The new model, EVA H, maintains the overall approach of EVA (Toohey et al., 2016),130

i.e.:131

• The global mean SAOD at 525 nm and effective radius are scaled from the total132

mass of SO4 (Section 2.4 and 3.4).133

• Transport equations govern the production, transfer and loss of SO4 among the134

model grid boxes (Section 2.3).135

• The latitudinal and vertical distribution of extinction is produced using the dis-136

tribution of SO4 mass in the model boxes and 2D shape functions (Section 3.3).137

• Wavelength-dependent extinction, single scattering albedo, and scattering asym-138

metry factor are calculated from the effective radius and extinction at 525 nm us-139

ing Mie theory (Section 3.4).140

EVA separates the stratosphere into three latitudinal bands (southern extratrop-141

ics, tropics and northern extratropics) which is consistent with respect to the structure142

of the Brewer-Dobson circulation (e.g. Plumb (1996); Neu and Plumb (1999); Butchart143

(2014)). To add a vertical dimension while maintaining the simplified approach of a box144

model, we use three vertical bands:145

• The lowermost extratropical stratosphere (6 16 km), where cross-tropopause mix-146

ing and transport at mid-latitudes is an important control on the transport of aerosols147

between the stratosphere and the troposphere.148

• The lower stratosphere (16-20 km) where aerosols in the tropics may be transported149

directly into the lowermost extra-tropical stratosphere due to the latitudinal de-150

pendence of isolines of potential temperature.151

• The middle stratosphere (≥ 20 km).152

The proposed structure including three latitudinal and three vertical bands results153

in an “8-box” model (Figure 1) if we keep only stratospheric boxes and exclude the up-154

permost tropical troposphere. To be consistent with the grid of the GloSSAC data, against155

which the model will be calibrated, the top of the model is at 39.5km altitude, and the156

tropical boxes comprise latitudes 6 22.5◦.157
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Figure 1. Schematic showing the 8 boxes of EVA H, and their approximate positions relative

to the tropopause sketched by the red dashed line. The boxes are indexed from top to bottom

and South to North. Arrows represent examples of SO4 fluxes from and into the southern hemi-

sphere boxes (boxes 1,4 and 7). The vertical axis is not to scale.

2.3 Evolution of sulfate mass in the model boxes158

The equations governing the evolution of the mass of sulfur in a model box will fol-
low the approach of EVA, adapted to the new 2-dimensional structure of EVA H. The
calibration of all parameters involved in the equations presented throughout Section 2
is detailed in Section 3. We assume that the evolution of the mass of SO2 in a box i (see
Figure 1 for box indices) M i

SO2
is governed by the equation:

dM i
SO2

dt
= Si −

M i
SO2

τ iprod
, (1)

where Si is a source term, and τ iprod is an effective timescale for the conversion of SO2

into sulfate aerosols. Accordingly, the production of SO4 in a box i will be of the form:

PROD =
Mi

SO2

τ iprod
=

Mi
vSO2

τ iprod
+ Bi , (2)

where the mass of SO2 in a box i is decomposed into the mass from volcanic injections159

M i
vSO2

and a flux Bi, assumed constant, corresponding to background non-volcanic sul-160

fur injections.161

We assume that two-way mixing can occur between two adjacent boxes belonging
to the same vertical band and/or between the lower tropical stratosphere (box 5) and
the lowermost extratropical stratosphere (boxes 7 and 8). The two-way mixing flux from
a box i to a box j is proportional to the SO4 mass difference between the boxes.:

MIXING =
Mi

SO4
−Mj

SO4

τ ijmix

, (3)

where τ ijmix is a mixing timescale.162
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As for two-way mixing, we assume that one-way mixing, i.e. residual transport, can
happen between two adjacent boxes belonging to the same vertical band and/or between
box 5 and boxes 7 and 8. The one-way mixing (OWM) flux from a box i to a box j is
proportional to the mass of SO4 in box i:

OWM =
Mi

SO4

τ ijowm

, (4)

where τ ijowm is a one-way mixing timescale. In EVA, one-way mixing terms are used to163

represent the residual Brewer-Dobson circulation from the tropics to the extra-tropics164

not accounted for in the two-way mixing terms.165

We assume that the loss of aerosol in box i is proportional to the mass of SO4 in
the same box:

LOSS = −
Mi

SO4

τ iloss
, (5)

where τ iloss is a loss timescale. In EVA H, we assume that the SO4 loss flux from a box166

that is not in contact with the tropopause (i.e., all boxes except boxes 5, 7 and 8) cor-167

responds to a positive flux for the box located directly below. For example, the loss term168

in box 1, −M
1
SO4

τ1
loss

, corresponds to a flux +
M1
SO4

τ1
loss

in box 4.169

The general equation governing the evolution of aerosol mass M i
SO4

in one of the
eight boxes i will then be:

dM i
SO4

dt
= PROD + MIXING + OWM + LOSS , (6)

where the production term PROD is governed by Equation 2, two-way and one-way mix-170

ing term(s) MIXING and OWM are governed by Equation 3 and 4 respectively, and the171

loss term LOSS is governed by equation 5 and may include positive terms related to the172

loss of aerosols in the box located above box i (e.g. for box 4, cf. fluxes illustrated on173

Figure 1). Note that timescales τloss, τmix and τowm are not physical timescales and de-174

pend on the geometry (e.g. thickness) of the 8 boxes of the model.175

The final configuration of the model depends on the following choices:176

1. Between which boxes to include two-way and one-way mixing terms177

2. The dependence of the timescales τprod, τloss, τmix and τowm on latitude, altitude,178

and season.179

We further discuss these choices in Section 3.2.180

2.4 Scaling for the stratospheric aerosol optical depth181

The calibration of the model requires linking the model primary output (i.e. the182

mass of sulfate in each box) to optical properties that can be directly observed. Follow-183

ing previous studies (e.g. Gao et al. (2008); Crowley and Unterman (2013); Toohey et184

al. (2016)), we assume that the relationship between the global mean SAOD at 525nm185

(SAOD525) and the total stratospheric SO4 burden MSO4 is adequately represented by186

a power-law scaling:187

SAOD525 = A×Mα
SO4 , (7)

where α is an exponent and A is a prefactor. In contrast with previous studies (e.g. Gao188

et al. (2008), Toohey et al. (2016)) , we use observations from a large number of erup-189

tions (19 eruptions with sulfur mass ranging from ca. 10−2 to 101 Tg S, latitude from190
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41oS to 50oN and height from 12 to 25 km) and simulations from interactive stratospheric191

aerosol models to constrain the exponent (α) of this scaling:192

1. Limited direct observational measurements of the stratospheric SO4 burden ex-193

ist. Consequently, we identified all SAOD peaks in the 1979-2016 GloSSAC SAOD194

timeseries, smoothed over 6 months to avoid peaks related to non-volcanic signals.195

We then defined corresponding SAOD increases by removing the minimum SAOD196

value between two peaks from the second peak value. We defined the associated197

SO2 loading as the mass of sulfur - taken from Carn et al. (2016) - injected by erup-198

tions which occurred no earlier than one month before the minimum SAOD value199

and no later than one month before the SAOD peak. The chosen one-month lags200

excludes eruptions for which most SO2 would likely not been transformed into sul-201

fate aerosols (Toohey et al., 2016). We filtered eruptions for which H∗ = SO2 inj. height
tropopause height ≤202

1. Last, we fit SAOD increases as a function of corresponding stratospheric SO2203

injections using a power law (Figure 2.a). We find an exponent of 1± 0.2.204

2. We use the 1979-2015 experiments run with the Community Earth System Model205

version 1 with a prognostic aerosol scheme (Whole Atmosphere Community Cli-206

mate Model, WACCM) using the Neely and Schmidt (2016) volcanic sulfur emis-207

sion inventory (Mills et al., 2016; Schmidt et al., 2018), with adjusted mass of 10208

Tg of SO2 (instead of 18 Tg in Neely and Schmidt (2016)) and height of 18-20 km209

(instead of 23-27 km in Neely and Schmidt (2016)) for the 1991 eruption of Mt.210

Pinatubo. We fit the monthly mean values of global mean SAOD anomaly (i.e.211

the difference between runs with and without volcanic emissions) at 550 nm to the212

stratospheric SO4 burden anomaly using a power-law fit and find an exponent of213

1.01± 0.01 (Figure 2.b).214

3. We use 30 experiments from the MAECHAM5-HAM interactive stratospheric aerosol215

model, where 8.5 TgS were injected at 6 different set of altitudes and latitudes (Toohey216

et al., 2019). We fit the monthly mean values of global mean SAOD anomalies at217

550 nm to the total stratospheric SO4 burden anomaly using a power-law fit and218

find an exponent of 0.84± 0.03 (Figure 2.c).219

4. We use 41 experiments from the UM-UKCA interactive stratospheric aerosol model,220

where injection mass, altitude and latitude were varied between 5-50 Tg S, 15-25221

km and 80oS-80oN, respectively (Marshall et al., 2019). We fit the monthly mean222

values of global mean SAOD anomalies at 550 nm to the total stratospheric SO4223

burden anomaly for burden ≤ 10 TgS using a power-law fit and find an exponent224

of 0.89± 0.02 (Figure 2.d).225

In agreement with scaling used in previous studies (e.g. Crowley and Unterman226

(2013); Toohey et al. (2016)), observations and the WACCM run with historical volcanic227

emission (Figure 2 a-b) suggest that a linear scaling between the stratospheric sulfur bur-228

den and the global mean SAOD holds for eruptions of the 1979-2015 period, i.e. for erup-229

tions injecting on the order of or less SO2 than the 1991 eruption of Mt. Pinatubo ('230

9 TgS). However, the observational constraint on α should be considered carefully as it231

was not derived from an observed relationship between monthly SAOD525 and MSO4.232

It is also very sensitive to the set of eruptions included, with for example a value of 2.3±233

0.8 when excluding the 1991 eruption of Mt. Pinatubo. The two sets of interactive strato-234

spheric aerosol model simulations used here suggest that the value of the exponent to235

be used in Equation 7 should be close to ca. 0.86 for stratospheric sulfate burdens up236

to 10 TgS (Figure 2 c-d). Given the proximity of this value to 1 and for simplicity, we237

will use a linear scaling to calibrate all model parameters in Section 3 - including the pref-238

actor A in Equation 7 - using 1979-2015 observational datasets (Carn et al. (2016) and239

Thomason et al. (2018)). However, our analysis shows that the assumption of a linear240

scaling between the mass of sulfate and SAOD should be considered with caution, even241

for relatively small stratospheric burdens (on the order of those following the Mt. Pinatubo242

1991 eruption).243
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Figure 2. a) Global mean SAOD increase (GloSSAC) as a function of corresponding strato-

spheric SO2 loadings (Carn et al. (2016)). b) Global mean SAOD anomaly as a function of the

global stratospheric SO4 burden anomaly in WACCM 1979-2015 run (Schmidt et al., 2018).

c) Same as (b) but for MAECHAM’s runs (Toohey et al., 2019) and using global mean SAOD

anomaly. d) Same as (c) but using UM-UKCA’s runs (Marshall et al., 2019). Blue lines show

best power law fits for sulfate burden up to 10 TgS, with the exponent α reported in legends.

For panel (d), the red dotted line shows a linear fit for burdens smaller than 5 TgS, while the red

dashed line shows a 2/3 power law fit for burdens larger than 20 TgS.

For large SO2 injections, previous studies have suggested that the relationship be-244

tween the sulfate burden and the SAOD follows a 2/3 power-law (Timmreck et al., 2010;245

Crowley & Unterman, 2013; Metzner et al., 2014; Toohey et al., 2016), although the crit-246

ical mass above which a non-linear scaling should apply has been suggested to be as low247

as 2.5 Tg S (Metzner et al., 2014) and as high as 30 TgS (Toohey et al., 2016). Here we248

take advantage of the recent simulations of Marshall et al. (2019), with sulfur burdens249

of up to 50 TgS and a large variety of eruption source parameters, to revisit these re-250

sults. We perform a linear fit of SAOD vs sulfate burden for burdens ≤ 5 TgS, and a251

2/3 power-law fit for burdens ≥ 20 TgS. These fits are shown on Figure 2.d and inter-252

sect for a burden of 10 TgS, which we choose as the threshold sulfate burden M∗ above253

which to apply a 2/3 scaling. This estimate falls in the large range of thresholds previ-254

ously estimated. Note that when fitting SAOD to sulfate burdens larger than 20 TgS255

using a power-law fit without a prescribed exponent, we find an exponent of 0.72±0.12256

which is compatible although a bit larger than the usually suggested 2/3 power-law. The257

final scaling we adopt for SAOD at 525 nm in EVA H is thus258

SAOD525 =

{
A×MSO4 if MSO4 ≤M∗

A× (M∗)
1/3 ×M2/3

SO4 if MSO4 > M∗ ,
(8)
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with M∗ = 10 TgS and where the pre-factor A× (M∗)
1/3

for the 2/3 scaling guaran-259

tees the continuity at MSO4 = M∗.260

2.5 Volcanic SO2 injection in the model261

The Carn et al. (2016) dataset provides the latitude, date, estimated mass of SO2262

and estimated height for each reported volcanic SO2 injection into the atmosphere. A263

simple method to include SO2 in the 8-box model is to inject the entire mass into the264

box which contains the point defined by the eruption latitude and estimated injection265

height. However, in the absence of a transport equation for SO2 in the model, a more266

realistic approach may be to distribute the SO2 spatially instead of injecting 100% of267

the mass in a single box. To determine the spatial distribution of injected SO2, we in-268

vestigated patterns of extinction increase in GloSSAC for the first five months follow-269

ing eruptions from the Carn et al. (2016) dataset (see supporting information S1 and Fig-270

ure S2). We found that the latitudinal and vertical positions of regions of initial extinc-271

tion increase are in good agreement with the injection latitude and altitude reported in272

Carn et al. (2016) (Figure S3), and have average extents of 1.2 km and 7o in height and273

latitude respectively (Figure S4). Accordingly, in EVA H, we distribute the SO2 mass274

injection among the boxes using Gaussian distributions centered on latitude and alti-275

tude estimates from Carn et al. (2016), with widths of 7o and 1.2 km.276

3 Calibration of the model277

3.1 Overview of the calibration process278

The linear scaling for the global mean SAOD for eruptions injecting less than 10279

TgS, in particular all eruptions of the 1979-2015 period, can be written
∑8
i=1 w

iAODi =280

A×
∑8
i=1M

i
SO4

where A is the same prefactor as in Equation 8, AODi is the spatially281

averaged AOD in a box i (i.e., extinction integrated from the lower to the upper verti-282

cal boundary of the box), and wi are weights calculated from the latitudinal extent of283

each box. For the 1979-2015 calibration period, each box thus follows the scaling wi×284

AODi = A × M i
SO4

. To calibrate the box model, we substitute M i
SO4

by wiAODi

A in285

equation 6. Next, assuming that production timescales τ iprod are independent of season,286

the mass of SO2 M
i
vSO2

in a box i of the model at any time t is given by:287

M i
vSO2

(t) =
∑
k,tk≤t

M i
ke
− t−tk
τi
prod , (9)

where k is an index representing eruptions in the Carn et al. (2016) dataset, tk the date288

of the kth eruption, and M i
k the mass of SO2 injected by eruption k in box i calculated289

as described in Section 2.5. Consequently, to calibrate the model, we simply calculate290

model predicted monthly timeseries of weighted AOD (wAODi
mod) in each box over 1979-291

2015 using the Carn et al. (2016) SO2 inventory, and find the set of model parameter292

values minimizing our chosen error metric E:293

E =

√√√√ 2015∑
t=1979

8∑
i=1

(wAODi
mod − wAODi

obs)
2 , (10)

where wAODi
obs(t) are the observed timeseries calculated from GloSSAC (Thomason et294

al., 2018). E is a root mean squared error (RMSE) on AOD calculated over all time steps295

and all boxes. Figure 3 shows the corresponding SO2 inputs and wAODobs timeseries296

in the 8 model boxes. To calculate E, we run the model without a non-volcanic back-297

ground injection (terms Bi in Equation 1), and compare its output with wAODobs time-298
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series from which we substract a non-volcanic background (black dashed lines on Fig-299

ure 3). We define this background as the 1999-2002 average because this period has the300

lowest stratospheric volcanic SO2 injections in the post-Pinatubo era (e.g. Carn et al.301

(2016); Schmidt et al. (2018)). We come back to the inclusion and calibration of back-302

ground injections in the model in Section 3.2.303
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Figure 3. Pre-processed data used to calibrate the model. Each subplot correspond to a box

of the model (cf. Figure 1). Blue bars (left y-axes) are SO2 injections (TgS) in each box calcu-

lated using the Carn et al. (2016) SO2 inventory and distributed among boxes using Gaussian

functions (Section 2.5). Black lines (right y-axes) show the AOD of each box (from GloSSAC,

obtained by integrating extinction from the lower to upper boundary of a box) weighted by the

horizontal spatial extent of boxes. Dashed lines shows the weighted AOD background (1999-2002

average) which was removed from each AOD timeseries before calibration.

Our calibration problem is non-linear and involves between 4 and 54 parameters304

depending on the choices made for the model configuration, such as the latitudinal and305

vertical dependence of loss timescales, which will be discussed in Section 3.2. Given a306

specific model configuration, we use a “genetic algorithm” to find a set of optimal pa-307

rameter values minimizing the error metric E (Equation 10). Genetic algorithms use strate-308

gies inspired from natural selection processes to efficiently solve non-linear optimization309

problems with a large number of parameters (Goldberg, 1989). Supporting information310

S4 provides a detailed description of the algorithm used and tests conducted using syn-311

thetic AOD datasets.312

3.2 Optimal model configuration313

Section 3.1 provides an overview of the method employed to calibrate any config-314

uration of the idealized aerosol model described in Section 2. We now have to choose a315

procedure for deciding which model “configuration” to use, i.e.: i) the dependence of the316

timescales τprod, τloss, τmix and τowm on latitude, altitude and season; ii) between which317

boxes to include two-way and one-way mixing fluxes. Configurations of increasing com-318

–10–



manuscript submitted to JGR: Atmospheres

plexity will include more parameters, and better fit the data. However, we have to de-319

cide whether improved fitness is significant given uncertainties in SO2 and extinction ob-320

servations.321

Figure 4 sketches the methodology used to determine whether a relatively complex322

“contender” model configuration performs significantly better than a relatively simple323

“reference” model configuration. Differences between a contender and reference model324

are kept minimal, e.g. the only difference may be that all boxes have the same loss timescale325

in the reference model while loss timescale depends on altitude in the contender model,326

resulting in 3 loss timescales instead of 1. First, we use the Carn et al. (2016) and GloS-327

SAC datasets to calibrate the contender model using a genetic algorithm (supporting in-328

formation S2). To test whether the calibrated contender model is significantly better than329

the reference model, we create 100 sets of perturbed model input and output data by330

randomly perturbating SO2 injection mass and height (Carn et al., 2016) and weighted331

AOD timeseries in the 8 boxes (Thomason et al., 2018) by up to 30%, 20% and 10%, re-332

spectively. The error E of both the contender and reference model are calculated for each333

perturbed dataset and we then obtain the probability pcont<ref that the contender model334

is better than the reference model given uncertainties in observational data used to cal-335

ibrate the model. We use a significance level of 95%, so that if pcont<ref > 0.95, the336

contender model becomes the new reference model. If pcont<ref < 0.95, we maintain337

the previous reference model and choose a new contender model by trying a different in-338

cremental change in the model configuration. The 95% confidence level chosen is some-339

what arbitrary because we would need to better constrain the level of uncertainty in ob-340

servational data and/or to use uncertainties specific to each eruption to rigorously de-341

termine a confidence level. However, it provides us with a threshold to discriminate model342

configurations that we estimate to be significantly fitter.343

Calculate model error E for 100 pertubed SO2

input and AOD datasets

Calibrate “contender” model using genetic algorithm

E1 E2 E100

Probability that contender model better than 
“reference” model. Is it significant?

Yes

Contender model 
becomes new 

reference model

Reference model 
does not change

No

Choose a new “contender” model configuration

… 

Figure 4. Flowchart of the iterative process employed to determine the optimal model config-

uration.

In our initial reference model (model “0”), there are no one-way mixing fluxes (Equa-344

tion 4), two-way mixing fluxes (Equation 3) are horizontal only, and all model param-345

eters are independent of latitude, altitude and season. The resulting model configura-346

tion has 4 parameters (A, τprod, τloss and τmix). Table 1 summarizes the result of our347

iterative process to determine an optimal model configuration (Figure 4). For example,348

the first row indicates that in the first contender model (model 1), loss timescales τloss349
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depend on altitude. Model 1 outperformed model 0 for 63% of the perturbed input/output350

datasets, which is not significant at the 95% level. The reference model has thus not been351

changed before testing a new contender model, as reflected in the second row.352

The only changes that we retain relative to our initial model configuration are to353

make loss timescales dependent on latitude and altitude. Making the production timescales354

dependent on altitude or latitude significantly improved the model error, but the cal-355

ibration results in ≥ 18 months production timescales in model boxes that do not receive356

significant injections from the 1982 El Chichòn and 1991 Pinatubo eruptions. When fit-357

ting global mean SAOD timeseries following individual eruptions using a 1-box model358

(not shown), production timescales for the 1982 El Chichòn and 1991 Pinatubo erup-359

tions are 6-9 months whereas production timescales for 6 eruptions injecting smaller SO2360

mass at lower altitude (such as Sarychev Peak 2009 and Nabro 2011) range from 0.5-2361

months. Production timescales of 18 months are thus unrealistic, in particular for the362

lower boxes of the model. In fact, such large production timescales result in an extended363

aerosol production in other boxes, meaning that a minimum in our error metric is achieved364

by fitting AOD variability associated with the 21st Century eruptions by a relatively con-365

stant term, which is not physically satisfying. Consequently, we maintain a constant pro-366

duction timescale in the model and further discuss this choice in Section 4.367

Most other tested changes, such as adding one-way mixing terms or making mix-368

ing timescales seasonally-dependent, did not result in significant error improvement. Fol-369

lowing our calibration process, we thus do not retain some of the parameterizations im-370

plemented in EVA (Toohey et al., 2016) that are physically consistent and result in good371

predictions of the spatio-temporal evolution of SAOD following the 1991 Pinatubo erup-372

tion (e.g. seasonal mixing, one-way mixing). However, the model scripts provided with373

this paper are not restricted to our choice of configuration but enable the user to choose374

latitudinal, vertical and seasonal dependence for all model timescales (see supporting in-375

formation S4).376

–12–



manuscript submitted to JGR: Atmospheres

Table 1. Summary of results of the iterative process used to determine the optimal model

configuration (Figure 4). The contender model becomes the new reference model when the prob-

ability pcont<ref that the error E of the contender model is smaller than the one of the reference

model is larger than 0.95, and that the calibration process leads to physically consistent parame-

ter values (e.g. in terms of range or ranking). Significant probabilities are reported in bold.

Ref.
model #

Cont.
model #

Change(s) in cont. model
relative to ref. model

pcont<ref Physically consistent?

0 1 Loss timescales depend on
altitude

0.63 Y

0 2 Loss timescales depend on
latitude

0.99 Y

2 3 Loss timescales depend on
altitude

0.98 Y

3 4 Production timescales depend
on altitude

1 N: The production timescales of
boxes 4-8 are '19 months, close to
the upper limit fixed (20 months)

3 5 Production timescales depend
on latitude

0.98 N: The production timescales of
extra-tropical boxes are '19 months,
close to the upper limit fixed (20
months)

3 6 Upwelling term between boxes
2 and 5

0.37 Y

3 7 Mixing between boxes 5 and
7/8

1 N: the model becomes insensitive
to injection latitude (regardless of
injection height)

3 8 Mixing timescales depend on
altitude

0.25 Y

3 10 Mixing timescales depend on
season

0.44 Y

3 11 Horizontal one-way mixing
between the tropics and extra-
tropics

0.42 Y

3 12 Horizontal one-way mixing in
boxes 1-3

0.27 Y

Table 2 reports the calibrated values of our final choice for the model configura-377

tion. We calculate uncertainties on parameter values by calibrating the model against378

each of the 100 perturbed input/output datasets. The values of the SAOD-sulfate mass379

scaling factor (A=0.0187), the production timescale (7.8 months) and mixing timescales380

(10.7 months) are moderately but significantly different from the values used in EVA (0.036,381

6 months and 15 months, respectively). The production timescale corresponds to the ef-382

fective production timescale of SO2 into radiatively active SO4 aerosol and should not383

be interpreted as the decay timescale of SO2 which is on the order of days to weeks (e.g.384

Carn et al. (2016)). The loss timescales span an important range (2.3-14.5 months), with385

most of them being much lower that the value used in EVA (' 11 months) which is ex-386
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pected as EVA H comprises 3 vertical layers. For boxes 1-3 and 4-6, extratropical loss387

timescales are significantly smaller than the tropical ones which is consistent with the388

tropical pipe model (Plumb, 1996; Neu & Plumb, 1999). Most model parameters are well389

constrained, with relative uncertainties on the order of 25% or less. The one exception390

is the loss timescale of box 5 (tropical lower stratosphere, the box with the most fluxes391

in EVA H), for which uncertainties permit values between ca. 9 and 21 months. Table392

S1 shows that when calibrating the model using different periods (e.g. 1990-2015 or 1990-393

1997), obtained parameter values are in close agreement with those obtained in Table394

2. Using the full 1979-2015 period results in better constrained parameter values, in par-395

ticular for the SAOD-sulfate mass scaling factor and the production timescale. We also396

repeated the calibration process with a mass of 10 Tg of SO2 for the 1991 Mt. Pinatubo397

(Table S1) instead of 18 Tg of SO2 in Carn et al. (2016). Some authors (e.g. Mills et al.398

(2016)) have argued that a smaller mass is representative of the SO2 not scavenged by399

ash and ice on the basis of the reanalysis of Pinatubo SO2 evolution by Guo et al. (2004).400

The resulting parameter values are not significantly different from the one shown in Ta-401

ble 2, although values for the SAOD-sulfate mass scaling factor (A, Equation 8) and pro-402

duction timescale (τprod) respectively lie in the upper and lower range of those exhib-403

ited in Table 2.404

Table 2. Values of parameters for the final model configuration chosen. The unit of A is

TgS−1 and all timescales are given in month. The 95% confidence interval is reported in paren-

theses. We calculate it as the 2.5th and 97.5th quantiles of the parameter value distribution

obtained by calibrating the model against each of the perturbed inputs/outputs dataset pair.

Parameter Value

A (SAOD-MSO4
scaling prefactor) 0.0187 (0.0152 - 0.0231)

τprod (production timescale) 7.8 (6.3 - 9.2)

τ1,3loss (loss timescale, extra-tropical middle stratosphere) 2.3 (1.9 - 2.7)
τ2loss (loss timescale, tropical middle stratosphere) 9.5 (7.2 - 16.5)

τ4,6loss (loss timescale, extra-tropical lower stratosphere) 2.7 (2.3 - 3.1)
τ5loss (loss timescale, tropical lower stratosphere) 14.5 (8.8 - 20.5)

τ7,8loss (loss timescale, extra-tropical lowermost stratosphere) 3.8 (3.3 - 4.4)
τmix (mixing timescale, lower and middle stratosphere) 10.7 (9.2 - 12.6)

Last, we find background sulfate injection terms Bi (Equation 2) by fitting a model405

run without volcanic injections to the background AOD in each box defined as 1999-2002406

average. Corresponding background injections and their uncertainties are reported in Ta-407

ble S2. The total injection in the model is 0.28 TgS yr-1, a bit larger but not significantly408

different from the value of 0.2 TgS yr-1 used in EVA.409

With all key model parameters calibrated, Figure 5 shows AOD predictions (area-410

weighted) for each box in comparison to GloSSAC. The northern hemisphere lowermost411

stratosphere (box 8) accounts for over 25% of the model error E, with an important over-412

estimation of AOD related to post-2005 eruptions and underestimation of AOD related413

to the 1982 El Chichón eruption. Similar errors are observed for the northern hemisphere414

lower stratosphere (box 6). In general, the AOD responses associated with the Kasatochi415

2008, the Sarychev Peak 2009 and the Nabro 2011 eruptions are slightly overestimated416

by the model. However, the observed AOD mostly falls within the model prediction con-417

fidence interval, whose magnitude is largely driven by uncertainties in injected SO2 al-418

titude and mass. The model seems to overestimate typical rise and decay timescales of419
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AOD peaks associated with lower stratospheric injections despite the latitude and al-420

titude dependence of the loss timescales.421
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Figure 5. Area-weighted AOD (wAOD) in the 8 model boxes. The black line shows observa-

tions from GloSSAC and the red line shows EVA H predictions using the Carn et al. (2016) SO2

inventory and optimal parameter values. The corresponding RMSE for each box is annotated

above each plot. Red shadings show the 95% confidence interval accounting for uncertainties

related to SO2 injections and model parameters.

3.3 Shape functions for prediction of latitudinally and vertically depen-422

dent properties423

In EVA, Gaussian shape functions (in latitude and height) are used to produce latitude-
altitude distribution of extinction given mass of aerosols in the three latitudinal boxes.
Here, we use a multilinear regression approach to produce extinction distributions from
observations. At each latitude λ and altitude z, we perform a multilinear regression where
the extinction timeseries EXT525(λ, z, t) from GloSSAC is the dependent variable and
the weighted AOD timeseries predicted by the model in the eight boxes wAODi(t) (us-
ing the Carn et al. (2016) SO2 inventory) are the independent variables:

EXT525(λ, z, t) =

8∑
i=1

ci(λ, z)× wAODi(t) + ε(λ, z, t) (11)

where i = 1..8 is the box index, ε(λ, z, t) is the error, and ci(λ, z) are the regression co-424

efficients of box i for latitude λ and altitude z. We impose that coefficients ci are pos-425

itive and that their upper limit decay exponentially with distance from the edge of their426

associated box i. As the global mean SAOD is equal to the sum of wAOD in the 8 boxes427

as well as to the global mean of the vertical integral of extinction, we also normalize each428

shape function ci by its global mean vertical integral. Additional procedures related to429

smoothing and extension to high-latitudes are described in supporting information S3.430

The final shape functions of EVA H are shown in Figure 6. Last, the global mean ver-431

tical integral of extinction equals the global mean SAOD and must follow our chosen scal-432

ing for SAOD (Equation 8). Consequently, for sulfate burdens larger than M∗, we nor-433

malize each shape function by
(

M∗

MSO4

)1/3
.434
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Figure 6. Shape function of EVA H as a function of latitude and altitude. Shape functions

correspond to regression coefficients ci in Equation 11, modified after extension to high latitude

and smoothing (supporting information S3). Dashed lines show latitudinal and vertical bound-

aries between the model 8 boxes.

3.4 Effective radius and wavelength-dependent optical properties435

Climate models without an interactive stratospheric aerosol scheme generally re-436

quire wavelength-dependent extinction, single scattering albedo and scattering asymme-437

try factor to simulate the climate response to volcanic eruptions. We adopt the same ap-438

proach as EVA to produce these parameters (Toohey et al., 2016). We assume that the439

aerosol size distribution is log-normal with a single mode and a width parameter σ =440

1.2. We then use look-up tables calculated from Mie theory to calculate wavelength-dependent441

optical properties from the extinction at 525 nm and the effective radius of the aerosol442

size distribution.443

To calculate the global mean effective radius (Reff ), Toohey et al. (2016) used the
following scaling:

Reff = R× (MSO4)
β

, (12)

with β = 1/3, R = 0.78 µm(TgS)−1/3, and setting a minimum effective radius of 0.2444

µm. We first test whether an exponent of 1/3 seems appropriate using observations and445

derived products from GloSSAC and simulations from the three interactive stratospheric446

aerosol model previously described (Section 2.4). In GloSSAC, extinction at 525nm and447

1020nm are the only variables issued from direct observations, while the effective radius448

is derived from these variables using methods described by Thomason et al. (2008). Con-449

sequently, instead of investigating the relationship between the effective radius and the450

mass of sulfate, we look at the relationship between the SAOD at 525nm and the effec-451

tive radius (Figure 7), which follows a scaling of the type Reff = r1 × SAODβ given452

our assumed linear scaling between SAOD and MSO4 for eruptions injecting less than453

10 Tg S (Section 2.4). When fitting the global mean effective radius (mass weighted or454

surface area density weighted) to SAOD using a power-law, both GloSSAC and the sim-455

ulations from UM-UKCA suggest that a 1/3 scaling is adequate, although simulations456

from WACCM and MAECHAM suggest values of with β ' 0.2 instead of 1/3. We thus457

maintain a value of β = 1/3 as in EVA. We set a minimum value of effective radius of458
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0.1 µm which seems broadly consistent with GloSSAC and simulations from interactive459

stratospheric aerosol models (Figure 7). Fitting the effective radius to SAOD using a 1/3460

power law, values of r1 range from 0.47 to 0.93 (for GloSSAC), corresponding to values461

of R (Equation 12) ranging from 0.17 to 0.26 µm(TgS)−1/3 using the relationship R =462

r1×A1/3 and our estimate of 0.0187 (TgS)−1 for A (Table 1). Such values of R are 3-463

4 times lower than the value of 0.78 used in EVA. However, Figure S9 shows that EVA H464

captures best the evolution of the global mean SAOD at 1020 nm following the 1991 Mt.465

Pinatubo eruption when using a value of 0.26 (close to the value derived from GloSSAC466

effective radius and SAOD at 525 nm). We thus use a value of R=0.25µm(TgS)−1/3 in467

EVA H. The local effective radius is then calculated so that: i) its mass-weighted global468

mean matches Equation 12; and ii) it follows the same spatial distribution as the aerosol469

mass, raised to the power 1/3.470
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Figure 7. Global mean weighted aerosol effective radius as a function of the global mean

SAOD at 525 or 550 nm for GloSSAC (a), WACCM (b), MAECHAM (c) and UM-UKCA (d).

Blue lines show power-law fit for each dataset, with fit coefficients value and confidence intervals

reported in legend. The effective radius is weighted by the surface area density (SAD) except for

MAECHAM for which it was mass-weighted.

4 Comparison of EVA H with EVA and interactive stratospheric aerosol471

models472

4.1 Comparison with EVA and WACCM for the historical period.473

In this subsection, we compare the predictions of EVA H for the historical period474

(1979-2015) with those made by:475

• EVA, the idealized model on which EVA H builds, but which does not account476

for SO2 injection height, has a prescribed vertical structure, and is calibrated against477

the 1991 Mt. Pinatubo eruption only.478

• WACCM, which includes a prognostic stratospheric aerosol scheme (Mills et al.,479

2016; Schmidt et al., 2018).480
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Figure 8 shows the global mean SAOD timeseries for GloSSAC, EVA H, EVA and481

WACCM. In panel (a), idealized models are run with the Carn et al. (2016) volcanic SO2482

emissions inventory, against which we calibrated EVA H. In panel (b), models are run483

using data from Neely and Schmidt (2016). WACCM uses an adjusted SO2 mass for the484

1991 Pinatubo eruption that has been argued to be representative of the mass of SO2485

not affected by ash and ice scavenging, and results in a good agreement between the model486

and observations (Mills et al., 2016; Schmidt et al., 2018). For each eruption, we inject487

exactly the same mass of SO2 in EVA H and EVA. Table 3 shows each model’s root mean488

squared error (RMSE) for the two volcanic SO2 emissions inventories and two different489

time periods (full 1979-2015 period and post-Pinatubo period).490
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c) Comparison of new model predictions for ISAMIP's emission databases

GLOSSAC (observations,525nm)
CALIOP (Friberg et al. 2018, observations, 525nm)
New model (525nm) run with Carn et al. (2016) (VolcDB3)
New model (525nm) run with Neely and Schmidt (2016) (VolcDB2)
New model (525nm) run with Bingen et al. (2017) (VolcDB1)

New model (525nm) run with 21stC subset (VolcDBSUB)

Figure 8. Panels a and b: Global mean SAOD timeseries (525 or 550nm) from observations

(GloSSAC) and three different models: EVA (Toohey et al., 2016), EVA H (this study) and

the interactive stratospheric aerosol model WACCM (Mills et al., 2016; Schmidt et al., 2018).

Panels a and b show models run with the Carn et al. (2016) SO2 inventory and the Neely and

Schmidt (2016) SO2 inventory, respectively. Red shadings show the estimated 95% confidence

interval related to uncertainties in calibration and SO2 input parameters. Red dashed line shows

predictions from EVA H with a fixed 25km injection height.

Panel c: Global mean SAOD timeseries (525nm) from observations (GloSSAC and Friberg et al.

(2018)) and EVA H using the volcanic SO2 emission databases used in the Interactive Strato-

spheric Aerosol Model Intercomparison Project (ISA-MIP, Timmreck et al. (2018)): Bingen et

al. (2017) (VolcDB1, 1997-2012), Neely and Schmidt (2016) (VolcDB2, 1990-2014), Carn et al.

(2016) (VolcDB3, 1979-2015) and the subset of the strongest 8 eruptions over 1998-2012 with

parameters (SO2 mass and height) averaged from all other databases used in Timmreck et al.

(2018).
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Table 3. Root mean squared error (RMSE, ×10−3) of model-predicted global mean SAOD

timeseries (Figure 8) relative to the GloSSAC timeseries. We show RMSE calculated with two

different SO2 emission databases (Carn et al. (2016) and Neely and Schmidt (2016)) and over two

different time periods. Bold values are outside the RMSE 95% confidence interval of EVA H. The

second row shows RMSE associated with prediction of EVA H run with a fixed injection height of

25km.

SO2 database Carn et al. (2016) Neely and Schmidt (2016)

Period 1979-2015 1998-2015 1979-2015 1998-2015

EVA H 3.8 2.1 4.4 1.2
EVA H, SO2 at 25km 4.8 4.2 4.3 2.3
EVA 7.8 5.2 5.9 3.9
WACCM - - 6.8 1.4

Regardless of the SO2 emissions inventory used, EVA H reproduces well the time491

evolution of the global mean SAOD. Over the 1998-2015 period, it even performs bet-492

ter using the Neely and Schmidt (2016) inventory instead of the Carn et al. (2016) in-493

ventory against which it was calibrated. The observed SAOD following the El Chichón494

1982 and Mt. Pinatubo 1991 eruptions lies within the estimated 95% confidence inter-495

val for model predictions. EVA H tends to overestimate the global mean SAOD asso-496

ciated with 21st century eruptions when using the Carn et al. (2016) inventory, and to497

underestimate it when using the Neely and Schmidt (2016) inventory. The main reason498

is the lower plume height estimates provided in the Neely and Schmidt (2016) inventory499

that result in less injected SO2 and shorter-lived SO4 in our box model. Figure 8 (panel500

c) gives a more comprehensive overview of the sensitivity of the model predictions to the501

SO2 emission inventory using the 4 inventories of the Interactive Stratospheric Aerosol502

Model Intercomparison Project (ISA-MIP, Timmreck et al. (2018)). In particular, we503

show that for the 21st century, uncertainties in model prediction related to the differ-504

ent inventories existing are often larger than discrepencies between two SAOD observa-505

tional datasets (GloSSAC and Friberg et al. (2018)). Regardless of the inventory or SAOD506

dataset used, the main failure of EVA H lies in a clear overestimation over the rise and507

decay time of SAOD associated with 21st century eruptions, despite the latitudinal and508

vertical dependence of loss timescales in the model.This failure is related to the fact that509

the production timescale is constant with a value of ca. 7.8 months. Consequently, in510

addition to overestimating SAOD rise timescales, we also overestimate decay timescales511

of relatively small eruptions for which the long production timescale compensates the512

small loss timescales in lower stratospheric boxes. We further discuss this problem and513

our choice of model configuration for production timescales in the following sections.514

Despite imperfections in the prediction and behavior of EVA H, it represents a clear515

improvement over EVA. For the 1979-2015 period, EVA H has a RMSE 30-50% smaller516

than that of EVA although differences are not significant (Table 3), and for the 1998-517

2015 period, the RMSE of EVA H is a factor of ca. 3 lower than EVA, with this differ-518

ence being significant for both the Carn et al. (2016) and Neely and Schmidt (2016) in-519

ventories. In particular, EVA overestimates global mean SAOD over 2008-2014 by al-520

most a factor of 3 using the Carn et al. (2016) inventory. Differences between EVA and521

EVA H are not straightforward to interpret as they result from: i) a different model struc-522

ture; ii) an additional input (injection height) in EVA H; and iii) different datasets used523

to calibrate the model. To gain insights on the importance of injection height to accu-524

rately predict volcanic forcing, we run EVA H with all injections height fixed to the Pinatubo525

1991 height (25 km in Carn et al. (2016)), which is the only eruption used to calibrate526
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EVA. In this run, we inject exactly the same mass of SO2 for each eruption as for the527

run with observed injection height (only the distribution among boxes changes). The cor-528

responding global mean SAOD prediction is the thin dashed line on Figure 8 a-b with529

associated RMSE reported in Table 3. It is in close agreement with EVA, demonstrat-530

ing that accounting for injection height makes a significant difference for accurately cap-531

turing volcanic forcing over a large range of volcanic injection parameters (e.g. Pinatubo532

1991 vs. Sarychev Peak 2009).533

When using the Neely and Schmidt (2016) inventory, EVA H has slightly lower RMSE534

on global mean SAOD than WACCM, but with differences between the two models be-535

ing insignificant (Table 3). In general, WACCM predicts larger SAOD peaks than EVA H536

for 21st eruptions, with significant differences for the Kasatochi 2008 eruption. Given the537

relatively low average injection heights in the Neely and Schmidt (2016) inventory, we538

suspect that these differences are related to the self-lofting of volcanic gases in WACCM539

which increases the fraction of sulfur ending in the stratosphere following upper-tropospheric/lower540

stratospheric injections. This process is absent in EVA H, and analyses done to deter-541

mine SO2 distribution among the box did not reveal any systematic bias between injec-542

tion heights reported in Carn et al. (2016) and the height at which observed peak ex-543

tinction enhancements occur following eruptions (supporting information S1, Figure S3).544

Last, WACCM captures well the short rise and decay timescales of SAOD peaks asso-545

ciated with relatively small volcanic injections in the 21st century in contrast to EVA H.546

Beyond improving predictions for the global mean SAOD, a major motivation for547

our new idealized model is to better capture the vertical structure of extinction changes548

associated with volcanic stratospheric sulfur injections. Figure 9 shows the time-altitude549

evolution of extinction for GloSSAC, EVA H (run with Carn et al. (2016)), EVA (run550

with Carn et al. (2016)) and WACCM (run with Neely and Schmidt (2016)) over three551

latitudinal bands corresponding to extratropical southern latitudes, tropics and extra-552

tropical northern latitudes. Two of the major features of extinction time-altitude evo-553

lution in GloSSAC are: i) large extinction values extending up to ca. 35 km for the Pinatubo554

1991 eruption vs. 20 km for post-2005 eruptions; and ii) a decrease of the altitude of peak555

extinction values following the 1991 Pinatubo eruption. These features cannot be cap-556

tured by EVA - which prescribes a Gaussian vertical profile of extinction calibrated against557

Pinatubo - but are well captured by EVA H, demonstrating the value of the vertical lay-558

ers of boxes added (Figure 1) and accounting for plume height. Similarly, WACCM cap-559

tures these features well. From Figure 9, it is again clear that extinction decay timescales560

for post-2005 eruptions are overestimated in EVA H, whereas the fully-coupled aerosol-561

chemistry-climate model WACCM reproduces well short decay timescales for these erup-562

tions. Last, in GloSSAC, extinction enhancements associated with the El Chichón 1982563

eruption occur at lower altitude than those from the 1991 Pinatubo eruption. EVA H564

fails to capture this, but the cause is most likely the particularly high injection height565

reported by Carn et al. (2016) for El Chichón 1982 eruptions (28 km for the phase with566

the most SO2 injections). Such height is at the upper end of values found in the liter-567

ature (e.g. Aubry et al. (2017) and references herein).568
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Figure 9. Extinction at '525 nm as a function of time and altitude, averaged longitudinally

and over three different latitudinal bands: 90oS − 22.5oS, 22.5oS − 22.5oN and 22.5oN − 90oN

corresponding to the left, center and right columns of plots respectively. The four rows of plots

show, from top to bottom, extinction from GloSSAC, EVA H (run with Carn et al. (2016)),

Easy Volcanic Aerosols (run with Carn et al. (2016)) and WACCM (run with Neely and Schmidt

(2016)).

4.2 Model sensitivity to injection height and latitude: Comparison with569

EVA, UM-UKCA and MAECHAM570

Figures 8 and 9 show that EVA H overestimates the decay timescale of SAOD as-571

sociated with 21st century eruptions, compared to both observations and simulations by572

WACCM. To further investigate this limitation, we investigate the sensitivity of 2 forc-573

ing metrics to injection altitude and latitude:574

• The cumulative global mean SAOD at 525 nm, in months, calculated as the time-575

integrated SAOD between 0 and 38 months following the eruption.576

• The e-folding time of the global stratospheric SO4 burden, in months, calculated577

using an exponential fit of the SO4 burden time series between one month after578

the peak value is reached and the month at which it reaches 10% of its peak value.579
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We calculate these parameters for a July injection of 8.5 Tg S, and compare the results580

to simulations conducted with UM-UKCA by Marshall et al. (2019) and with MAECHAM581

by Toohey et al. (2019). Results for a January eruption are also shown for MAECHAM.582

Figure 10 shows cumulative global mean SAOD as a function of injection height583

and latitude for EVA H (top left panel) and UM-UKCA (top center panel). Values for584

UM-UKCA are calculated using a Gaussian process emulator trained with 41 simulations585

(Marshall et al., 2019). The two models are in broad agreement on the following features:586

i) cumulative SAOD decreases as the injection latitude increases (in absolute value); ii)587

cumulative SAOD decreases with decreasing injection height below ca. 20km. However,588

there are important differences between the two models. First, the cumulative SAOD589

predicted by UM-UKCA is much larger than that of EVA H. For example, for tropical590

injections between 20 and 25km, UM-UKCA has cumulative SAOD of ca. 4.5 months591

vs. 1.8 months for EVA H. Second, UM-UKCA is much more sensitive to injection lat-592

itude, with the cumulative SAOD of an eruption at ≥ 45o latitude being 30-60% smaller593

than an eruption with the same injection height in the tropics while this difference is only594

ca. 20% in EVA H. Third, the only seasonal effect in EVA H is related to the tropopause595

height seasonal cycle which explains the slight differences in cumulative SAOD for in-596

jections in the lowermost southern hemisphere stratosphere and lowermost northern hemi-597

sphere stratosphere. In contrast, for the July injection shown, UM-UKCA predicts a clearly598

larger cumulative SAOD and e-folding time for eruptions in the southern hemisphere com-599

pared to those in the northern hemisphere for injection heights between 18 and 27 km.600

This may be related to the more pronounced transport and stratosphere-troposphere ex-601

change in the winter hemisphere (Butchart, 2014) in January-March (i.e., the northern602

hemisphere), when the aerosol burden of a July eruption peaks in UM-UKCA.603

Figure 10 (top right) shows cumulative SAOD for EVA H, UM-UKCA, MAECHAM604

and EVA for six sets of injection latitude and height for which simulations were conducted605

with MAECHAM, for an 8.5 Tg S July injection. Although the cumulative SAOD pre-606

dicted by MAECHAM and UM-UKCA differ by up to 30%, both interactive stratospheric607

aerosol models agree remarkably well on the dependence of SAOD to injection latitude608

for a 24km injection, with a decrease by a factor 2-2.5 between an injection at 4oS and609

one at 56oN. In comparison, EVA H produces a weaker dependence with a decrease by610

ca. 15%. However, for a 56oN injection, EVA H and MAECHAM are in reasonable agree-611

ment for the dependence of cumulative SAOD to injection height. Last, regardless of the612

set of injection height and latitude used, the cumulative SAOD predicted by EVA is ca.613

1.7 months. This constant value is expected as EVA does not account for injection height,614

and uses injection latitude only to determine the latitudinal distribution of aerosol. The615

loss timescales are independent of latitude so that the time evolution of the total sul-616

fate burden and global mean SAOD only depend on the injected mass.617

Bottom panels of Figure 10 are similar to the top panels, but showing results for618

the SO4 e-folding time instead of the cumulative SAOD. EVA H and UM-UKCA agree619

well on e-folding time for tropical injections above ≥ 20km, ca. 12 months, while MAECHAM620

predicts a smaller value of ca. 8 months. However, for both interactive stratospheric aerosol621

models, the e-folding time strongly decreases with increasing latitude whereas EVA H622

exhibits a weak dependence on latitude. The e-folding time in EVA (12.1 months) is in-623

dependent of both eruption latitude and height. Overall, the e-folding timescale in EVA H624

varies between 9 and 11.5 months for injections heights between 10 and 26km and all625

latitudes. This range is very small compared to the one of MAECHAM and UM-UKCA,626

and may appear surprising given that loss timescales τloss in the model are as small as627

2.3 months in extratropical boxes (3.8 months for the lowermost extratropical stratosphere,628

i.e. boxes 7 and 8). However, the production timescale τprod is large (7.8 months) and629

independent of latitude or height. As a result, sulfate is produced long after the peak630

sulfate burden, and the e-folding timescale largely exceeds the loss timescales for extra-631

tropical injections. Last, Figure 10 shows MAECHAM’s results for a January eruption632
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in addition to a July eruption. For an injection height of 24 km and at latitudes span-633

ning 15-56oN, the e-folding timescale and cumulative SAOD tend to be larger for erup-634

tions occuring in winter (January for latitudes considered), which is consistent with the635

explanation proposed above for the hemispheric asymmetry observed for UM-UKCA e-636

folding timescale and cumulative SAOD. In contrast, the total stratospheric aerosol bur-637

den evolution does not depend on eruption season in EVA and EVA H.638

All in all, comparison with both observations (Figure 8) and interactive stratospheric639

aerosol models (Figure 8 and 10) suggest that the forcing predicted by EVA H still lacks640

sensitivity to eruption latitude. Despite this limitation, it is important to stress the sen-641

sitivity of forcing to eruption source parameters is more realistic in EVA H compared642

to EVA in which the total sulfate burden and global mean SAOD evolution are indepen-643

dent of both injection altitude and latitude.644

-50 0 50

Injection latitude (oN)

10

15

20

25

In
je

ct
io

n 
he

ig
ht

 (
km

 a
.s

.l)

New model

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
um

ul
at

ed
 S

A
O

D
 (

m
on

th
s)

-50 0 50

Injection latitude (oN)

10

15

20

25

In
je

ct
io

n 
he

ig
ht

 (
km

 a
.s

.l)

New model

9

9.5

10

10.5

11

11.5

S
O

4
 e

-f
ol

di
ng

 ti
m

e 
(m

on
th

s)

-50 0 50

Injection latitude (oN)

10

15

20

25

In
je

ct
io

n 
he

ig
ht

 (
km

 a
.s

.l)
UKCA

1

1.5

2

2.5

3

3.5

4

4.5

C
um

ul
at

ed
 S

A
O

D
 (

m
on

th
s)

-50 0 50

Injection latitude (oN)

10

15

20

25

In
je

ct
io

n 
he

ig
ht

 (
km

 a
.s

.l)

UKCA

6

7

8

9

10

11

12

S
O

4
 e

-f
ol

di
ng

 ti
m

e 
(m

on
th

s)
4
o S,24km

15
o N,24km

36
o N,24km

56
o N,24km

56
o N,16km

56
o N,13km

0

1

2

3

4

5

C
um

ul
at

ed
 S

A
O

D
 (

m
on

th
s)

All models (select injections)

New model
UKCA
MAECHAM
MAECHAM (January)
EVA

4
o S,24km

15
o N,24km

36
o N,24km

56
o N,24km

56
o N,16km

56
o N,13km

4

6

8

10

12

S
O

4
 e

-f
ol

di
ng

 ti
m

e 
(m

on
th

s)
All models (select injections)

Figure 10. Cumulated global mean SAOD at 525 or 550nm (top, in month) and total strato-

spheric SO4 burden e-folding time (bottom, in month) for a July injection of 8.5 Tg S into the

stratosphere. The left (EVA H) and center (UM-UKCA) columns show the sensitivity of these

variables as a function of the injection latitude and latitude. The right column show these vari-

ables for EVA H, EVA, UM-UKCA and MAECHAM for six sets of injection latitude and alti-

tude. For MAECHAM, the same variables for a January eruption are shown in cyan.

4.3 EVA H limitations and future developments645

In light of Sections 4.1 and 4.2, the most important future improvement to EVA H646

is to implement a dependence of the production timescale τprod on the injection param-647

eters. The currently constant timescale results in a lack of sensitivity of the model-predicted648

forcing to the eruption latitude. The calibration methodology and/or datasets used in649

our study did not enable us to constrain such dependence, with unrealistically high val-650

ues of τprod obtained when implementing a height or latitude dependence (Section 3.2).651

If we calibrate a model with height-dependent production timescales bounded to a max-652

imum of 2.5 months for boxes 4-8, it is significantly outperformed by the model config-653
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uration retained with constant production timescales (using the same performance cri-654

teria as in Section 3). The primary reason is that with all other parameters being kept655

constant, a smaller production timescale results in larger SAOD peaks. Consequently,656

when enabling smaller production timescales in boxes 4-8, the overestimation of SAOD657

over the 21st century is worsened although the predicted rise and decay timescales com-658

pare better with observations (Figure S10). A solution and potential future development659

is to make the scaling factor A (Equation 7) dependent on height as well, so that SAOD660

signals associated with both the 1991 Pinatubo and the 21st century eruptions can be661

reproduced, despite the tendency of smaller production timescales to produce larger SAOD662

peaks. However, constraining the sulfate mass-SAOD scaling with available observations663

and interactive stratospheric aerosol models is already challenging, even at global scale664

(see Section 2.4), and such solution would largely increase the complexity of both the665

calibration process and the box model. In addition, we cannot exclude that the appar-666

ent overestimation of SAOD peak and rise timescale for 21st century eruptions is a con-667

sequence of errors in the observational datasets chosen to calibrate the model (Carn et668

al. (2016) and Thomason et al. (2018)). For example, Figure 8.c shows that for two SO2669

emission inventories, EVA H tends to underestimate post-2000 SAOD which would fa-670

cilitate the implementation of short production timescales in boxes 4-8 while maintain-671

ing good predictions for the Pinatubo eruption. Altogether, given the significant improve-672

ments of EVA H over EVA, we choose to maintain the model configuration resulting from673

the calibration process described in Section 3. The scripts provided make it trivial for674

users of EVA H to implement different values of production timescales in each box, in675

which case we recommend values of 0.5-2.5 months in boxes 4-8 (see Section 3.2 for jus-676

tification of these values and Figure S10 for the corresponding model run).677

Given the empirical nature of EVA H, its calibration and predictions are limited678

by the parameter space covered by the set of eruptions used for calibration. In partic-679

ular, the calibration of parameters of boxes 1-3 (≥ 20km) is constrained mostly by two680

large tropical eruptions (El Chichón 1982 and Pinatubo 1991). Furthermore, whereas681

the ice-core and geological records suggests that some of the most important volcanic682

events of the Common Era injected material well above 30 km in the atmosphere (e.g.683

Samalas 1257, Vidal et al. (2015)), no eruptions used to calibrate EVA H injected sul-684

fur above ca. 25 km. Until future eruptions contribute to fill this gap, interactive strato-685

spheric aerosol model experiments could be valuable to help inform idealized models out-686

side the parameter space in which they are calibrated.687

Following our calibration procedure, seasonal mixing was not included in our cho-688

sen model configuration, in contrast to EVA, because it did not significantly improve the689

model performance as defined by our error metric (Equation 10). However, the season-690

ality of stratospheric mixing is apparent both in observations and models (e.g. Butchart691

(2014)) and is implemented as an option in EVA H (see Supporting Information S4). Last,692

whereas interactive aerosol size evolution is key to accurately predict volcanic forcing (e.g.693

Mann et al. (2015)), the parameterization we use for aerosol effective radius is simplis-694

tic (Section 3.4) and effective radius does not affect, e.g., the model sulfate loss timescales.695

Improving the representation of aerosol size distribution in the box model is thus an im-696

portant area of future development.697

5 Examples of application of EVA H: Reconstruction of past volcanic698

forcing and fast response during volcanic eruptions.699

A major application of EVA (Toohey et al., 2016; Toohey & Sigl, 2017) is to pro-700

duce forcing datasets for the experiments of the Model Intercomparison Project on the701

climatic response to Volcanic forcing (VolMIP, Zanchettin et al. (2016)) and the Pale-702

oclimate Modeling Intercomparison Project (Jungclaus et al., 2017; Kageyama et al., 2018).703

For VolMIP, the large spread among predictions from state-of-the-art aerosol-chemistry-704

climate models indeed prevented the identification of consensual forcing datasets derived705
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from these models, motivating the use of an idealized model. Consequently, an impor-706

tant question is whether using EVA H would significantly affect forcing datasets used707

in VolMIP or PMIP. We test this hypothesis using:708

• A Tambora (1815)-like eruption with the same injections conditions as those used709

in Zanchettin et al. (2016) (Figure 3), i.e. 60 Tg of SO2 at 0oN and 24 km alti-710

tude in April.711

• An Eldgjá (939)-like eruption with 32 Tg of SO2 (Toohey & Sigl, 2017) at 63.6oN712

and 12.5 km altitude (Moreland (2017), 17.5 km for plume top which corresponds713

to ca. 12.5 km for the umbrella cloud) in April.714

The resulting global mean SAOD timeseries for EVA H and EVA are shown in Figure715

11, along with VolMIP runs from 4 interactive stratospheric aerosol models for the Tamb-716

ora case.717

For the Mt. Tambora case (Figure 11, left), the peak SAOD predicted by EVA H718

is 20% smaller than the one predicted by EVA, which is largely due to our lower value719

of the threshold sulfate burden above which we apply a 2/3 scaling for SAOD (Equa-720

tion 8). However, differences between EVA H and EVA are not statistically significant.721

This result is not surprising given the similarity of injections parameters (tropical injec-722

tion at ' 25km) for Mt. Tambora 1815 and Mt. Pinatubo 1991, against which EVA is723

calibrated. We thus expect a reasonable agreement between EVA H and EVA for high-724

altitude tropical injections, and in particular for most experiments of VolMIP. Figure 11725

also shows for EVA H the uncertainty related to model parameter values and injection726

parameters, with uncertainty on the erupted mass of SO2 taken from Toohey and Sigl727

(2017) and a 20% uncertainty on injection height. Although the predicted SAOD is un-728

certain by a factor of 2, the spread among predictions of interactive stratospheric aerosol729

models remains much larger. The predictions of two models (WACCM and UM-UKCA)730

are also clearly incompatible with the predictions of EVA H. Although no conclusion can731

be made on which models are more realistic given the absence of SAOD observations and732

large uncertainties on the SO2 mass and injection altitude for the 1815 Tambora erup-733

tion, these results stress again the large magnitude of inter-model spread, even in the734

face of the important uncertainties related to constraining sulfate injections from ice-cores735

or model calibration against recent eruptions.736

For the Eldgjá case (Figure 11, right), there are significant differences between the737

SAOD predicted by EVA and EVA H. If we use a latitude of 63.6o but a height of 25738

km in EVA H (similar to that of the Pinatubo 1991 eruption), the peak SAOD is 40%739

smaller than the one predicted by EVA. This difference is solely due to differences in model740

structure (including sensitivity to eruption latitude) and calibration processes. When741

we use the estimated injection height of 12.5 km for this eruption (Moreland, 2017), the742

resulting SAOD is significantly lower than the one predicted by EVA H with a 25 km743

injection height or the one predicted by EVA. In particular, the predicted SAOD is 50-744

90% smaller than the one predicted by EVA. As a consequence, we conclude that: i) us-745

ing EVA H instead of EVA would significantly affect the forcing reconstruction for extra-746

tropical eruptions; and ii) injection height is an important parameter that should be ac-747

counted for - when constrained - in past volcanic forcing reconstruction. A comprehen-748

sive reconstruction of volcanic forcing associated with all eruptions for which the mass,749

latitude and altitude of injection are constrained is beyond the scope of this paper but750

is the subject of ongoing workwhich will greatly benefit from recent efforts to better con-751

strain eruption source parameters(Burke et al., 2019; Gautier et al., 2019; Hartman et752

al., 2019). However, the preliminary results shown in Figure 11 reinforce the discussion753

of uncertainties given by Toohey and Sigl (2017), and help to quantify the degree to which754

the recommended PMIP4 forcing represents an upper estimate for extra-tropical erup-755

tions.756
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Figure 11. Global mean SAOD anomalies following a volcanic SO2 injection with source

parameters similar to those estimated for: i) Left: the 1815 Mt. Tambora eruption (60 Tg of

SO2, 0oN, 24km a.s.l., April); and ii) Right: the 939 eruption of Eldgjá (32 Tg of SO2, 63.6oN,

12.5 km a.s.l, April). The orange and red continuous lines respectively show predictions from

EVA and EVA H, with shadings showing the 95% confidence interval for EVA H. The red thin

dashed line show results from EVA H ran with a 25 km injection height. On the left plot, dotted

lines show interactive stratospheric aerosol model runs from the VolMIP Tambora experiment

(Zanchettin et al., 2016; Marshall et al., 2018). These models are WACCM (Mills et al., 2016),

UM-UKCA (Dhomse et al., 2014), SOCOL (Sheng et al., 2015) and MAECHAM (Niemeier et al.,

2009). We use the latest runs available after some modeling groups updated their contributions,

and always use runs with point injection (as opposed to band injection) for modeling groups that

tested both types of injection of volcanic SO2.

As a final comment to this section, one of the main advantages of EVA H over in-757

teractive stratospheric aerosol models is that it is computationally inexpensive. Conse-758

quently, it can be used to produce rapid estimates of future SAOD perturbations imme-759

diately following volcanic eruptions. A recent example of such application of the model760

is the June 2019 eruption of Raikoke (Kurile Islands). Shortly after first estimates of SO2761

loading and injection height were available, we ran EVA H and provided global mean762

SAOD predictions to members of the “Volcano Response” (VolRes) initiative (https://wiki.earthdata.nasa.gov/display/volres).763

The model was run 1000 times to span the large range of SO2 mass and height estimates764

available during the first few days after the eruption. The figures provided to the com-765

munity are shown on Figure S11, and were shared with the VolRes community less than766

30 minutes after deciding to apply EVA H to the Raikoke 2019 eruption. EVA H pre-767

dicts relatively small perturbations of SAOD confined to the Northern Hemisphere, with768

a peak value of 9×10−3 at most for global mean SAOD. This upper estimate was later769

refined to 6.5×10−3 after a more detailed SO2 injection profile was provided. Follow-770

ing our discussion of EVA H limitations (Section 4), we expect that the rise and decay771

timescales of SAOD shown on Figure S11 are overestimated. It will be an interesting test772

for the model to compare Figure S11 with SAOD observations over the next year.773
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6 Conclusions774

We take advantage of recently developed datasets of volcanic SO2 injections (Carn775

et al., 2016) and atmospheric optical properties (GloSSAC, Thomason et al. (2018)) to776

develop EVA H, a new idealized model of volcanic aerosol forcing that accounts for the777

mass, latitude and height of the sulfur injected by a volcanic eruption. Compared to the778

most recently developed idealized model (EVA, Toohey et al. (2016)) that did not ac-779

count for injection altitude and was calibrated only against the 1991 Mt. Pinatubo erup-780

tion, we show that EVA H:781

• Captures significantly better the global mean stratospheric aerosol optical depth782

variations during the 21st century.783

• Captures well the vertical evolution of extinction following eruptions of the 1979-784

2015 period.785

• Exhibits a forcing sensitivity to the eruption latitude and injection height that is786

in better agreement with observations and interactive stratospheric aerosol model787

results.788

Despite this latter improvement, an extensive comparison of EVA H with interactive strato-789

spheric aerosol model simulations shows that the latter remain more sensitive to the erup-790

tion latitude.791

We apply EVA H to discuss potential biases and uncertainties in EVA-based vol-792

canic forcing datasets recommended for use in VolMIP (Zanchettin et al., 2016) and PMIP793

(Jungclaus et al., 2017), components of phase 6 of the Coupled Model Intercomparison794

Project. While the volcanic forcing constructed from EVA H does not significantly dif-795

fer for high-altitude tropical volcanic injections, it is significantly lower for high-latitude796

or low altitude emissions. As a consequence, we expect that the forcing produced by EVA H797

would be similar for most experiments of VolMIP (Zanchettin et al., 2016) but may have798

significant differences with EVA(eVolv2k) (Toohey & Sigl, 2017), the reference volcanic799

forcing dataset used in PMIP (Jungclaus et al., 2017; Kageyama et al., 2018).800

In contrast to interactive stratospheric aerosol models, idealized models like EVA801

and EVA H are computationally inexpensive and can be used to extensively explore erup-802

tion source parameter space, which is for example required to rigorously quantify un-803

certainties associated with reconstructed forcing of past eruptions. We provide Matlab R©
804

scripts that enable to run EVA H in the configuration selected in our study (Section 3.2),805

but also in different configurations, e.g. with additional dependence of mixing timescales806

on season or production timescales on height and latitude. All scripts are available in807

Supporting Information S4 and EVA H.zip, or via T.J.A.’s website (https://sites.google.com/view/thomasjaubry/products)808

, GitHub (https://github.com/thomasaubry/EVA H), and Code Ocean [link to be added809

at next revision or proofing stage after review of the Code Ocean team] where users with-810

out a Matlab R© license can run the EVA H model.811
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