161 research outputs found

    Modeling crosshatch surface morphology in growing mismatched layers. Part II: Periodic boundary conditions and dislocation groups

    Full text link
    We present further developments and understanding of the commonly observed crosshatch surface morphology in strain-relaxed heteroepitaxial films. We have previously proposed that the crosshatch morphology is directly related with strain relaxation via threading dislocation glide which results in both surface step and misfit dislocation (MD) formation [see Andrews , J. Appl. Phys. 91, 1933 (2002)-now referred to as Part I]. In this article, we have used solutions for the stress fields and displacement fields for periodic MD arrays which include the effects of the free surface. These solutions avoid truncation errors associated with finite dislocation arrays that were used in Part I. We have calculated the surface height profile for relaxed films where the misfit dislocations were introduced randomly or the misfit dislocations were placed in groups with alternating sign of the normal component of their Burgers vector. We have calculated the surface height profiles where the slip step remains at the surface ["slip step only" (SSO)] and where the slip step is eliminated ["slip step eliminated" (SSE)] due to annihilation of opposite sense steps, such as could happen during growth or lateral mass transport. For relaxed films, we find that the surface height undulations, characteristic of crosshatch, increase with increasing film thickness for the SSO case, whereas the surface becomes flatter for the SSE case. Experiments on relaxed In0.25Ga0.75As films on (001) GaAs show that the surface height undulations in the [110] direction increase with increasing film thickness. Thus, we conclude that with increasing film thickness the crosshatch in the slow diffusion [110] direction is best described by the SSO case. (C) 2004 American Institute of Physics

    EVpedia: a community web portal for extracellular vesicles research

    Get PDF
    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.X1110478Ysciescopu

    Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides

    Get PDF

    Кераміка «terra sigillata» з с. Зимне на Волині

    Get PDF
    Стаття присвячена публікації чотирьох керамічних посудин типу «terra sigillata», знайдених на дні р. Луги у с. Зимне Володимир-Волинського району Волинської області. Попередній аналіз цих знахідок дозволяє віднести їх до Понтійського центру виробництва такого посуду. Вірогідним шляхом потрапляння цієї колекції на Волинь була готська експансія у Північне Причорномор’я
    corecore