1,050 research outputs found

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    The decay of quadrupole-octupole 1−1^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the Îł\gamma-decay behavior of candidates for the (21+⊗31−)1−(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ⃗,Îłâ€Č)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity Îł\gamma-ray Source (HIÎł{\gamma}S) facility in combination with the high-efficiency Îł\gamma-ray spectroscopy setup Îł3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of Îł\gamma-Îł\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 31−3^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11−1^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.

    A Search for Dense Molecular Gas in High Redshift Infrared-Luminous Galaxies

    Full text link
    We present a search for HCN emission from four high redshift far infrared (IR) luminous galaxies. Current data and models suggest that these high zz IR luminous galaxies represent a major starburst phase in the formation of spheroidal galaxies, although many of the sources also host luminous active galactic nuclei (AGN), such that a contribution to the dust heating by the AGN cannot be precluded. HCN emission is a star formation indicator, tracing dense molecular hydrogen gas within star-forming molecular clouds (n(H2_2) ∌105\sim 10^5 cm−3^{-3}). HCN luminosity is linearly correlated with IR luminosity for low redshift galaxies, unlike CO emission which can also trace gas at much lower density. We report a marginal detection of HCN (1-0) emission from the z=2.5832z=2.5832 QSO J1409+5628, with a velocity integrated line luminosity of LHCNâ€Č=6.7±2.2×109L_{\rm HCN}'=6.7\pm2.2 \times10^{9} K km s−1^{-1} pc2^2, while we obtain 3σ\sigma upper limits to the HCN luminosity of the z=3.200z=3.200 QSO J0751+2716 of LHCNâ€Č=1.0×109L_{\rm HCN}'=1.0\times10^{9} K km s−1^{-1} pc2^2, LHCNâ€Č=1.6×109L_{\rm HCN}'=1.6\times10^{9} K km s−1^{-1} pc2^2 for the z=2.565z= 2.565 starburst galaxy J1401+0252, and LHCNâ€Č=1.0×1010L_{\rm HCN}'=1.0\times10^{10} K km s−1^{-1} pc2^2 for the z=6.42z = 6.42 QSO J1148+5251. We compare the HCN data on these sources, plus three other high-zz IR luminous galaxies, to observations of lower redshift star-forming galaxies. The values of the HCN/far-IR luminosity ratios (or limits) for all the high zz sources are within the scatter of the relationship between HCN and far-IR emission for low zz star-forming galaxies (truncated).Comment: aastex format, 4 figures. to appear in the Astrophysical Journal; Revised lens magnification estimate for 1401+025

    Dense molecular gas in quasar host galaxies: a search for HCN emission from BR B1202-0725 at z=4.695

    Full text link
    We report on the results of a search using the VLA for redshifted HCN(1-0) emission from the host galaxy of BR B1202-0725, an optically luminous quasar at z=4.695. The host galaxy emits strongly in the rest-frame far-infrared, and shows characteristics very similar to that of more local, ultraluminous infrared galaxies, in which a significant fraction of the far-infrared emission is powered by star formation. We find a 3-sigma upper limit to the HCN(1-0) emission of 4.9 x 10^10 K kms^-1 pc^2, assuming a lambda-cosmology. This limit is consistent with correlations derived from measurements of the HCN, CO, and far-infrared emission for a sample of more local galaxies, including starbursts (Solomon et al, 1992a)

    Fire and Fish Dynamics in a Changing Climate: Broad- and Local-Scale Effects of Fire-Induced Water Temperature Changes on Native and Nonnative Fish Communities

    Get PDF
    Fire is a key natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West. In the absence of migratory individuals from undisturbed portions of a watershed, persistence of native fish populations depends on the conditions of the post-fire stream environment. Stream temperatures typically warm after fire, and remain elevated until riparian vegetation recovers. An additional threat to native species is that nonnative fishes have invaded many waters, and these species tolerate or prefer warmer water temperatures. Thus, forecasting the long-term effects of fire on native fish populations requires an understanding of fire dynamics (size, distribution, frequency, and severity), the extent and location of changes in riparian forest structure and time to recovery, changes in stream temperatures associated with these forest changes, and how native and nonnative fish respond to changes in water temperature. To perform spatially explicit simulation modeling that examined the relations among fire disturbance, stream temperature, and fish communities, we upgraded and then linked the fire-forest succession model FireBGCv2 to a stream temperature model to project changes in water temperature in the East Fork Bitterroot River basin in Montana under an array of climate and fire management scenarios. Model projections indicated that although climate led to increases in fire severity, frequency, or size, water temperature increases at the basin scale were primarily a consequence of climate-driven atmospheric warming rather than changes in fire regime. Consequently, variation in fire management—fuel treatment or fire suppression—had little effect at this scale, but assumed greater importance at the scale of riparian stands. By revisiting a large number of previously sampled sites in the East Fork Bitterroot River basin in Montana, we evaluated whether bull trout persistence and other native and nonnative fish distributions were related to temperature changes associated with fire and recent climatic trends. Although fires were related to marked increases in summer water temperatures, these changes had a positive effect (westslope cutthroat trout) or a negligible effect (bull trout) on the abundance and distribution of native fish species, whereas the abundance of nonnative brook trout markedly declined in some instances. Fire-related changes in factors other than the thermal regime may have contributed to these patterns. In contrast, at the scale of the entire basin we observed an upward-directed contraction in the distribution of bull trout that was unrelated to fire. We concluded that this may be a response to temperature increases related to climate change

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word
    • 

    corecore