2,870 research outputs found

    Cloning Dropouts: Implications for Galaxy Evolution at High Redshift

    Full text link
    The evolution of high redshift galaxies in the two Hubble Deep Fields, HDF-N and HDF-S, is investigated using a cloning technique that replicates z~ 2-3 U dropouts to higher redshifts, allowing a comparison with the observed B and V dropouts at higher redshifts (z ~ 4-5). We treat each galaxy selected for replication as a set of pixels that are k-corrected to higher redshift, accounting for resampling, shot-noise, surface-brightness dimming, and the cosmological model. We find evidence for size evolution (a 1.7x increase) from z ~ 5 to z ~ 2.7 for flat geometries (Omega_M+Omega_LAMBDA=1.0). Simple scaling laws for this cosmology predict that size evolution goes as (1+z)^{-1}, consistent with our result. The UV luminosity density shows a similar increase (1.85x) from z ~ 5 to z ~ 2.7, with minimal evolution in the distribution of intrinsic colors for the dropout population. In general, these results indicate less evolution than was previously reported, and therefore a higher luminosity density at z ~ 4-5 (~ 50% higher) than other estimates. We argue the present technique is the preferred way to understand evolution across samples with differing selection functions, the most relevant differences here being the color cuts and surface brightness thresholds (e.g., due to the (1+z)^4 cosmic surface brightness dimming effect).Comment: 56 pages, 22 figures, accepted for publication in Ap

    Comparison of lightning location data and polarisation radar observations of clouds

    Get PDF
    Simultaneous observations of both the precipitation and the lightning associated with thunderstorms show that the lightning is within 3 km of the maximum precipitation echo. The intensity and type of the precipitation is observed with 500 m spatial accuracy using an S-band polarization radar and the position of the lightning is inferred from a low frequency magnetic direction finding location system. Empirical adjustment to the angles using the redundancy of the lightning data reduce this error. Radar echoes above 45dBZ may be caused by soft hail or hailstones, but similarly intense echoes may result from melting snow. The data show that a new polarization radar parameter, the linear depolarization ratio, can distinguish between soft hail and melting snow, and that the intense radar echoes associated with melting snow pose no threat of lightning. A lightning risk only exists when the radar indicates that the clouds contain soft hail or hailstones

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter

    Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields

    Full text link
    We use all available fields with deep NICMOS imaging to search for J dropouts (H<28) at z~10. Our primary data set for this search were the two J+H NICMOS parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF. The primary selection criterion was (J-H)>1.8. 11 such sources were found in all search fields using this criterion. 8 of these were clearly ruled out as credible z~10 sources, either as a result of detections (>2 sigma) blueward of J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining sources could not be determined from the data. The number appears consistent with the expected contamination from low-z interlopers. Analysis of the stacked images for the 3 candidates also suggests contamination. Regardless of their true redshifts, the actual number of z~10 sources must be <=3. To assess the significance of these results, two lower redshift samples (a z~3.8 B-dropout and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size scaling. They were added to the image frames, and the selection repeated, giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from z~6. This is consistent with the strong evolution already noted at z~6 and z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10 (integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or 0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter
    • …
    corecore