
FEEDBACK CONTROL OF OSCILLATIONS IN

COMBUSTION AND CAVITY FLOWS

Simon J. Illingworth

Magdalene College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

November 2009

mailto:si250@cam.ac.uk
http://www.magd.cam.ac.uk
http://www.cam.ac.uk


ii



iii

PREFACE

Except where indicated below, this dissertation is the result of my own work and in-

cludes nothing which is the outcome of work done in collaboration. This dissertation

is not substantially the same as any that I have submitted for a degree or diploma or

other qualification at any other University.

The work reported in chapters 5 & 6 on cavity oscillations was carried out in col-

laboration with Professor Clarence Rowley at Princeton University.

On the subject of spelling, the author sides with the Oxford English Dictionary,

who justify their consistent use of the termination -ize as opposed to -ise by observing

that “some have used the spelling -ise in English, as in French. . . But the suffix itself,

whatever the element to which it is added, is in its origin the Greek -izein, Latin -izare;

and, as the pronunciation is also with z, there is no reason why in English the special

French spelling should be followed, in opposition to that which is at once etymological

and phonetic.”

This dissertation contains 50 figures, 3 tables and approximately 32,000 words.

Simon Illingworth

11th November 2009

Cambridge, U.K.



iv



v

ACKNOWLEDGEMENTS

Dr Aimee Morgans has been a fantastic supervisor, and I cannot thank her enough for

her support, guidance, patience, and for being so generous with her time. Her contri-

butions both to this thesis and to my happiness at Cambridge these last few years are

very gratefully acknowledged. I also thank my advisor Professor Dame Ann Dowling

for her time and support, and Dr Simon Stow for help with his low order model.

Over the course of my PhD, it was my great pleasure to spend two months at

Princeton University, where Professor Clarence Rowley shared his time, his expertise

on cavity oscillations, and his DNS code. I also thank Dr Anuradha Annaswamy, who

kindly hosted me at the Massachusetts Institute of Technology and shared her great

insight into adaptive control.

Financial support from the EPSRC and Rolls-Royce plc is gratefully acknowl-

edged.

I have met some wonderful people here in Cambridge. I am very grateful to my

friends for their encouragement, and for making my time in Cambridge so happy and

memorable.

This thesis is dedicated to my Mum, for loving me and supporting me in everything

that I have wanted to do.



vi



vii

ABSTRACT

This thesis considers the control of combustion oscillations, motivated by the suscep-

tibility of lean premixed combustion to such oscillations, and the long and expensive

development and commissioning times that this is giving rise to. The controller used

is both closed-loop, employing an actuator to modify some system parameter in re-

sponse to a measured signal, and adaptive, meaning that it is able to maintain control

over a wide range of operating conditions. The controller is applied to combustion

systems with annular geometries, where instabilities can occur both longitudinally and

azimuthally, and which require multiple sensors and multiple actuators for control.

One of the requirements of Lyapunov-based adaptive control which is particularly

troublesome for combustion systems is then addressed: that the sign of the high-

frequency gain of the open-loop system is known. We address it by using an adaptive

controller which employs a Nussbaum gain, and successfully apply it experimentally

to combustion oscillations in a Rijke tube.

Another type of fluid-acoustic resonance is then considered: the compressible flow

past a shallow cavity. We start by finding a linear model of the cavity flow’s dynamics,

or its ‘transfer function’, which we identify from direct numerical simulations. We

compare this measured transfer function to that given by a conceptual model which

is based on the Rossiter mechanism, and which models each component of the flow

physics separately.

We then look at using closed-loop control to eliminate these cavity oscillations.

We start by designing a robust H2 controller based on a balanced reduced order model

of the system, the model being provided by the Eigensystem Realization Algorithm

(ERA). The robust controller provides closed-loop stability over a much wider Mach

number range than seen in previous studies. Finally, we look at the suitability of the

adaptive controller, earlier developed for combustion oscillations, for the cavity. Based

on some general properties of the cavity flow, and by using collocated control, the

oscillations are eliminated at all Mach numbers tested in the range 0.4≤M ≤ 0.8.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Combustion oscillations can occur in any system where combustion takes place within

an acoustic resonator, and are caused by a coupling between unsteady heat release

and acoustic waves. Unsteady combustion is an efficient acoustic source (Dowling &

Ffowcs Williams, 1983) and combustors tend to be highly resonant systems, which

together can lead to self-excited oscillations by the following mechanism. Pressure

waves, generated by unsteady heat release at the flame, reflect from the combustor

boundaries and arrive back at the flame. If the phase relationship is suitable, their

interaction with the flame gives rise to further unsteady heat release, which in turn

generates more pressure waves.

Gas turbines, aeroengine afterburners, ramjets, boilers and furnaces are all sus-

ceptible to combustion oscillations, with the most common laboratory-scale example

being an open-ended vertical tube with a heat source in the lower half, known as a Rijke

tube (Rayleigh, 1945). Combustion oscillations are of particular concern, however, for

the new generation of gas turbines operating under lean premixed prevaporized (LPP)

conditions. LPP combustion reduces emissions of oxides of Nitrogen (NOx), but is

especially prone to combustion oscillations (Richards & Janus, 1998).

To eliminate combustion oscillations, the coupling between unsteady heat release

and pressure waves must be interrupted, and this can be achieved in a number of ways.

Using feedback control – where an actuator modifies some system parameter in re-

sponse to some measured signal – is one option, and allows many powerful tools from

1



2 CHAPTER 1: INTRODUCTION

control theory to be applied to the problem.

This thesis focuses on eliminating combustion oscillations using feedback control.

The emphasis is on robust and adaptive feedback control, motivated by the requirement

that any control scheme be effective over a wide range of combustor operating condi-

tions. We then look at using feedback control methods to eliminate another type of

self-excited oscillations: those induced by the compressible flow past an open cavity.

1.2 OVERVIEW

This thesis considers two quite different self-excited systems. What binds it together

is the common challenges faced in applying feedback control – the overwhelming ma-

jority of literature for which is concerned with linear, finite-dimensional systems – to

systems that are governed by the Navier-Stokes equations, a set of non-linear, partial

differential equations.1

The main contributions of this thesis are as follows:

• The development of an adaptive feedback controller for unstable combustors

with annular geometries, where both longitudinal and circumferential modes are

possible.

• The adaptive control – demonstrated experimentally – of combustion oscillations

for unknown sign of the high-frequency gain (or ‘control direction’) by using a

Nussbaum gain.

• The identification of the linear frequency response (or ‘transfer function’) of the

compressible flow past a two-dimensional cavity which is useful for feedback

control design, and its comparison with a simple linear model.

• The determination of a balanced low-order model of the cavity flow, and its

utilization to form a robust controller using H2 robust control methods.

• The adaptive control of cavity oscillations using a Lyapunov-based adaptive con-

troller.
1Clearly, combustion oscillations introduce the added complexity of flame dynamics.
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Chapters 2–4 look at feedback control of combustion oscillations, whilst chapters

5 & 6 (which are self-contained) look at feedback control of cavity oscillations.

Chapter 2 collects together relevant material from the literature. We start by look-

ing at the physics of combustion oscillations, before summarizing and categorizing

methods for their control. In the latter half of the chapter we focus specifically on

feedback control methods for combustion oscillations. We first look at the challenges

and fundamental limitations of feedback control, and then at some general properties of

combustion systems that are important for the adaptive feedback controller of chapter

3.

Chapter 3 focuses on adaptive feedback control of combustion systems with an-

nular geometries. We first look at a Lyapunov-based adaptive controller previously

developed for longitudinal combustion systems, before developing it further for appli-

cation to annular geometries. The adaptive controller is then applied to a number of

annular combustor geometries in a low-order thermoacoustic network model.

Chapter 4 looks at one of the fundamental requirements of Lyapunov-based adap-

tive control: that the sign of the high-frequency gain of the open-loop system is known.

We first give physical significance to the high-frequency gain of a system. A novel

method for adaptive stabilization without knowledge of the sign of the high-frequency

gain is then introduced, before being applied experimentally to a Rijke tube.

In chapter 5 we turn our attention to feedback control of cavity oscillations. In this

chapter we focus on linear models that are useful for feedback control purposes, and

we do this in two ways. First, direct numerical simulations of the cavity flow are used

to characterize its linear dynamics (or ‘transfer function’). Second, we compare the

transfer function found in direct numerical simulations to that given by a simple linear

model.

Chapter 6 first builds on chapter 5 by forming a reduced order model of the cavity

flow. This model is then used for the design of an H2 robust controller, which provides

stability over a larger Mach number range than seen previously in the literature. Fi-

nally, we apply adaptive feedback control to the cavity, and see that it provides stability

over an even larger range of free-stream Mach numbers.

Chapter 7 contains concluding remarks and suggestions for future work.
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CHAPTER 2

COMBUSTION OSCILLATIONS AND THEIR CONTROL

2.1 HISTORICAL PERSPECTIVE

Rayleigh (1945) was the first to describe the mechanism for combustion oscillations.

Rayleigh pointed out that an acoustic wave will gain energy if heat is added in phase

with pressure, but will lose energy if heat is added out of phase with pressure, and

these observations constitute Rayleigh’s criterion.

Many of the earliest studies of combustion oscillations were for liquid-propellant

rocket motors in the 1950s and 1960s (Crocco & Cheng, 1956; Crocco, 1965), research

that was motivated by the stability problems encountered in these devices. More re-

cently, the problem of combustion stability has been encountered in low NOx gas tur-

bine applications, where using lean premixed combustion makes the combustor espe-

cially prone to combustion oscillations (Correa, 1998; Richards & Janus, 1998), and

this has motivated a great deal of research on the subject (Keller, 1995; Fleifil et al.,

1996; Lieuwen et al., 1998; Broda et al., 1998).

More details about combustion oscillations in general can be found in the review

articles of McManus et al. (1993), Candel (2002) and Ducruix et al. (2003).

2.2 PHYSICS OF COMBUSTION OSCILLATIONS

We now look at a generalization of Rayleigh’s criterion made by Chu (1964), which

looks at the energy balance within a thermoacoustic system, and includes the effect

of boundary conditions. The inequality that we find provides insight into combustion

oscillations and methods for their control, and was earlier used by Dowling & Morgans

5
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unsteady
combustion

surface, Scontrol volume, V

acoustic
waves

ρ̄ , c̄

FIGURE 2.1: A control volume of perfect gas within a combustor.

(2005) for the same purpose.

Consider a perfect gas contained in a volume V and surface S, shown in figure 2.1.

For simplicity, assume that the gas is linearly disturbed from rest (no mean flow), that

there is no mean heat release, and that viscous forces are negligible. We use ρ , u, p, c,

q and γ to denote the density, particle velocity, pressure, speed of sound, heat release

rate per unit volume and ratio of specific heat capacities respectively. An over-bar

denotes a mean value, while a prime denotes a perturbation.

An inhomogeneous wave equation can then be obtained from the equations of con-

tinuity of mass and momentum:

1
c2

∂ 2 p′

∂ t2 −
∂ 2 p′

∂x2 =
∂ 2

∂ t2

(
p′

c2 −ρ
′
)

. (2.1)

Expressing the source term on the right-hand side of (2.1) in terms of the heat release,

which occurs in the combustion zone only

∂ 2

∂ t2

(
p′

c2 −ρ
′
)

=
γ−1

c2
∂q
∂ t

,

integrating with respect to time, and multiplying by p′/cρ , one arrives at a local bal-

ance equation for the acoustic energy:

∂

∂ t

(
p′2

2ρc2 +
1
2

ρu2
)

+
∂ p′u
∂x

=
γ−1
ρc2 p′q.



2.2. PHYSICS OF COMBUSTION OSCILLATIONS 7

A balance equation for the whole control volume is obtained by integrating over that

volume, giving

∂

∂ t

∫

V

(
1
2

ρ̄u2 +
p′2

2ρc2

)
dV =

∫

V

(γ−1)p′q
ρc2 dV −

∫

S
p′udS. (2.2)

The left-hand side of (2.2) is the rate of change of the sum of the kinetic and potential

energies in the volume V . The first term on the right-hand side represents the exchange

of energy between combustion and acoustic waves, while the final term corresponds

to energy lost by the gas in doing work on the bounding surface S. There is another

source of energy loss: that due to the momentum and thermal boundary layers of

the combustor (Landau & Lifshitz, 1959; Matveev, 2003) – whose influence could be

important in a Rijke tube, for example – but we neglect this here.

We now see Rayleigh’s criterion in a more quantitative form: for the energy of the

gas to increase with time, the product p′q must be positive and such that

∫

V

(γ−1)p′q
ρc2 dV >

∫

S
p′udS, (2.3)

where the over-bar denotes an average over one period of oscillation. Therefore the

phase difference between p′ and q must lie in the range [−90◦,+90◦], and their product

over a cycle must be sufficiently large to overcome damping, for self-excited oscilla-

tions to occur. This simplified example gives valuable insight into both the causes of

combustion instabilities and ways in which they can be mitigated.

The range of phenomena leading to combustion instabilities in real gas turbines

is much richer, including vortex dynamics, hydrodynamic instabilities and pulsations

of the flame front – although the underlying coupling mechanism still comes from

pressure waves in the vast majority of cases. For a review of these processes, see

Candel (1992).

Combustion instabilities will grow until their amplitude is such that non-linear ef-

fects become important. The dominant non-linearity occurs in the heat release rate,

which essentially saturates: the amplitudes of the pressure fluctuations are sufficiently

small that the acoustic waves remain linear (Dowling, 1997). In some combustion sys-
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tems, however, such as solid rocket motors, non-linearity of the acoustic waves can

also be important (Culick, 1971).

2.3 CONTROL STRATEGIES

From (2.3), it is clear that there are two broad strategies for eliminating combustion

oscillations: one can either target the left-hand side of (2.3) by modifying the phase

relationship between p′ and q, or target the right-hand side by increasing the level of

damping in the system.

Techniques to suppress combustion oscillations can be categorized in many dif-

ferent ways, and this can lead to some ambiguity in the terms ‘passive control’ and

‘active control’. Here we choose the classification shown in figure 2.2, which is con-

sistent with that used in active noise and vibration control. According to this defi-

nition, active control provides external energy to the system via an actuator, whilst

passive control techniques do not. Active control can be further divided into open- and

closed-loop strategies. By its very definition closed-loop control involves a feedback

loop, where an actuator modifies some system parameter in response to some mea-

sured signal.1 Open-loop control, although incorporating an actuator, involves no such

feedback loop.

passive control

control strategies

open-loop closed-loop 
(feedback)

active control

FIGURE 2.2: Classification of control strategies.

In practice, passive control is achieved either by reducing the susceptibility to in-

1Within closed-loop schemes, a further distinction can be made based on the time scales of the
controller response (McManus et al., 1993). We make no such distinction here, instead assuming that
the controller is acting on the same time scales as the oscillations, unless otherwise stated.
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stability via, for example, modifications to the combustor geometry or to the fuel injec-

tion system (Richards & Janus, 1998; Steele et al., 2000), or by removing energy from

the acoustic waves using, for example, acoustic liners (Eldredge & Dowling, 2003) or

Helmholtz resonators (Gysling et al., 2000; Bellucci et al., 2004). The disadvantages

of passive control are that it tends to be effective only over a limited range of oper-

ating conditions, and so instability could still occur at off-design conditions; and it is

ineffective at the low frequencies at which some combustion oscillations can occur.

There have been relatively few studies of active, open-loop control of combustion

oscillations. Those that exist typically use an oscillatory signal with a fixed amplitude

and frequency, and the open-loop actuation is provided either by modulation of the fuel

mass flow rate (Richards et al., 1997; Prasanth et al., 2002) or by direct excitation of

the shear layer (McManus et al., 1990). For a review of open-loop (and early closed-

loop) control studies, see McManus et al. (1993).

It is important to understand that the mechanism of suppression used by open-loop

control approaches is fundamentally different to that used by closed-loop control. The

dynamics of a linear system cannot be changed by open-loop control, and so any open-

loop actuator that modifies combustion oscillations must do so at finite amplitudes,

typically at amplitudes similar to those of the oscillations being suppressed.

By contrast, closed-loop control can act to change the dynamics of a linear sys-

tem, which implies that very small-amplitude actuation can be used, especially once

the initial large-amplitude oscillations have been suppressed. (This is shown clearly by

Tachibana et al. (2007), who compare open-loop and closed-loop control strategies us-

ing secondary fuel injection.) Furthermore, a rich literature exists on robust and adap-

tive feedback control, whose techniques can be used to design feedback controllers

that are effective over a wide range of operating conditions. There are many studies

of closed-loop control in the literature, and we now look at this particular strategy in

more detail.

2.4 FEEDBACK CONTROL OF COMBUSTION OSCILLATIONS

Figure 2.3 shows the effect of a generic closed-loop control scheme on a combustion

system: an actuator modifies some system parameter in response to some measured
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signal. In this way, the dynamics of the overall system are modified and an unstable

combustor can be stabilized.

combustor sensor

controlleractuator

measurementinput

FIGURE 2.3: Typical feedback control arrangement for a combustion system.

Many studies of closed-loop control of combustion oscillations have been per-

formed, and no attempt is made to list them all here. Rather, an overview of closed-

loop control strategies in the literature is given. For an excellent recent review of the

subject, see Dowling & Morgans (2005).

The concept of using closed-loop, feedback control to eliminate combustion oscil-

lations is not new, dating back to the 1950s when it was applied theoretically to low-

frequency oscillations in liquid-propellant rockets (Tsien, 1952). Closed-loop control

was first applied experimentally to the Rijke tube by Dines (1983) and then by Lang

et al. (1987) and Heckl (1988), and shortly afterwards to an afterburner (Bloxsidge

et al., 1988; Langhorne et al., 1990) and to a turbulent ducted flame (Poinsot et al.,

1989). (See also Paschereit et al. (1998) for application to a swirl-stabilized combus-

tor.)

Those early studies all involved very simple phase-shift or time-delay control loops.

Gulati & Mani (1992) showed the inadequacies of such controllers, and demonstrated

the improved closed-loop performance of a controller designed using the frequency

response of the system and Nyquist techniques. Since then, model-based control tech-

niques have been promoted (Annaswamy et al., 2000; Morgans & Dowling, 2007) and

many such studies have been performed. In any model-based control scheme, there

are two pertinent issues to address. First, a model of the system must be available,

and this can come from a physics-based model (Hathout et al., 1998; Chu et al., 2003;

Campos-Delgado et al., 2003a,b) or, less commonly, directly from experiments us-
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ing system identification techniques (Tierno & Doyle, 1992; Murugappan et al., 2003;

Kjær et al., 2006; Niederberger et al., 2009). (The dynamical processes involved in

large- and full-scale systems, such as combustion and turbulence, are too complex for

physics-based models to be useful, and so system identification techniques are cru-

cial for model-based control at these scales.) Such system identification techniques

are useful for describing the linear dynamics of the combustion system. Recently, a

unified framework for incorporating flame non-linearities into a model of combustion

oscillations has been proposed (Noiray et al., 2008). Second, a framework for the con-

troller design must be chosen, and this has typically involved Linear Quadratic control

or some variant (Hathout et al., 1998; Murugappan et al., 2003) or H∞ loop-shaping

techniques (Tierno & Doyle, 1992; Hong et al., 2000; Chu et al., 2003). More recently,

model predictive control techniques have been applied (Gelbert et al., 2008).

2.4.1 ADAPTIVE FEEDBACK CONTROL

A particularly attractive type of control scheme is adaptive control, where the controller

adapts to changes in the system, thereby maintaining control over a wide range of

operating conditions.

Perhaps the earliest adaptive control study for combustion oscillations was per-

formed by Brouwer et al. (1991), but here the characteristic timescales of the control

signal were much longer than those of the instability – a type of feedback control often

referred to as trim adjustment (McManus et al., 1993).

The first ‘dynamic’ adaptive controllers for combustion oscillations, using con-

comitant sensing and actuation timescales, were Least Mean Squares (LMS) con-

trollers (Billoud et al., 1992). Since then neural networks (Liu & Daley, 1999; Blon-

bou et al., 2000) and observer-based adaptive controllers (Neumeier & Zinn, 1996;

Sattinger et al., 2000) have also been considered.

More recently, a class of self-tuning regulators has been considered (Krstic et al.,

1999). The adaptive tuning of the parameters of the controller is based on finding a

Lyapunov function that reduces in amplitude with time when the control parameters

are updated in the right way. Annaswamy et al. (1998) looked at such an adaptation

scheme for a specific combustion system, and Evesque et al. (2003b) followed by
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considering a scheme that was valid for a whole class of combustion systems.

Determining an accurate model of a combustion system which is useful for feed-

back control purposes is one of the most difficult aspects of model-based feedback

control, and so the advantages of adaptive control are clear. No such model is re-

quired, and instead only minimal information about the system is needed. This is

particularly true of the self-tuning regulators of Annaswamy et al. (1998) and Evesque

et al. (2003b), since only some very general assumptions about the combustion system

are made. We will look at this class of self-tuning regulators in more detail in chapter

3.

2.5 PRACTICAL IMPLEMENTATION AND CHALLENGES OF FEEDBACK CONTROL

The practical implementation of feedback control in combustion systems presents many

challenges. These include turbulence and combustion, which are too complex to be

modeled accurately; significant time delays brought about by the combustion process

and by acoustic propagation times; and non-linear dynamics. Despite these challenges,

both large- and full-scale demonstrations of closed-loop control already exist (Seume

et al., 1998; Moran et al., 2000; Johnson et al., 2001).

Two of the defining features of any feedback control system are the measurement

of a feedback signal and the actuation of some system parameter, and the sensing and

actuation that these necessitate are two of the greatest challenges of closed-loop control

of combustion oscillations. We now look at the subjects of sensing and of actuation in

more detail.

2.5.1 SENSORS

Experimental feedback control studies have most commonly used microphones and

pressure transducers for sensing. Since pressure waves propagate throughout the entire

combustor, they do not need to be placed near the high temperatures of the heat release

zone (although increasing this distance will increase the acoustic time delay). They

offer high bandwidth and reasonable robustness. Examples of their use range from the

early experiments of Heckl (1988) and Lang et al. (1987) to full-scale demonstrations
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by Seume et al. (1998) and Moran et al. (2000).

An alternative sensing approach is is to measure the light emitted by certain progress

chemicals in the flame. Such sensors are independent of mode shape unlike pressure

sensors, but require optical access to the system, and may be susceptible to changes

in the flame location. Examples of this approach include the earliest experimental

demonstration on a Rijke tube by Dines (1983) and a diesel-fueled turbulent combus-

tor (Hermann et al., 1996).

For a review of sensors for combustion control, see Docquier & Candel (2002).

2.5.2 ACTUATORS

Satisfactory actuation is one of the greatest challenges for feedback control of combus-

tion oscillations. The ideal actuator is robust and durable; has low power requirements;

has high control authority to affect limit cycle oscillations; has a linear response; and

has a high bandwidth to excite the system at the frequencies of the unstable modes. In

reality it is very difficult to meet all of these requirements with a given actuator.

Many of the early feedback control studies used loudspeakers for actuation (Dines,

1983; Lang et al., 1987; Heckl, 1988; Poinsot et al., 1989). These provide a linear

response and high bandwidth, but suffer from insufficient robustness and prohibitive

power requirements for full-scale applications.

Exploiting the chemical energy released in combustion is an efficient means of

meeting power requirements for feedback control, and so actuation of the fuel mass

flow rate has been employed in more recent studies. The first fuel modulation actuators

were based on on-off fuel injectors (Langhorne et al., 1990) and were thus non-linear.

Solenoid valves have a linear response and are thus preferable, and have been used in

large- and full-scale applications (Seume et al., 1998). Their main drawback is their

limited bandwidth and control authority. Magneto-restrictive valves have increased

bandwidth (Neumeier & Zinn, 1996; Niederberger et al., 2009), and show promise

for application at full-scale, provided that control authority can be maintained at high

frequencies.
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2.5.3 TIME DELAYS

To see the effect of time delays, we look at a simple second-order system, which cor-

responds to the dynamic model of low-frequency liquid-propellant rocket instabilities

that was proposed in the earliest studies of combustion oscillations (Crocco & Cheng,

1956):

ẍ(t)+2ζ ωoẋ(t)+ω
2
o x(t) =−Fx(t− τ), (2.4)

where ωo and ζ characterize the resonance frequency and damping of the system and

F is a constant. In the rocket instabilities model, x(t) corresponds to the perturbation

of the injection rate, whose characteristic equation is forced by the injection rate at an

earlier time x(t− τ). Taking a Taylor series of the right-hand side to first order, which

is more easily justified when one considers that the frequencies of interest are low, and

therefore that the time scales of the characteristic equation are long, (2.4) becomes

ẍ(t)+(2ζ ωo−Fτ)ẋ(t)+(ω2
o +F)x(t) = 0.

Thus for positive F , the time delay reduces the effective damping of the system, and

for Fτ > 2ζ ωo the system is unstable. This simple example helps to highlight the

open-loop destabilizing effect that time delays can introduce.

Time delays also present difficulties when feedback control is used, perhaps un-

surprisingly when the actuation provided by the closed-loop controller is now based

on old information. Banaszuk et al. (1999) use the presence of large time delays in

combustion systems as an explanation of the peak splitting phenomenon seen in some

closed-loop experiments. We now look at the origins of secondary peaks in more de-

tail.

2.5.4 THE ORIGIN OF SECONDARY PEAKS

Secondary peaks have been observed in many closed-loop studies on combustion oscil-

lations: two examples from Bloxsidge et al. (1988) and from Langhorne et al. (1990)

are shown in figure 2.4. One observes that although the original oscillation is signif-

icantly reduced, new frequencies appear in the spectra when control is activated. For

many of the early studies, this phenomenon can be attributed to the very simple con-
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trollers used, and this was acknowledged by Langhorne et al. (1990), made clear via

experiments by Gulati & Mani (1992), and studied in some detail for analytical models

of combustors by Fleifil et al. (1998).

We now explain the phenomenon of secondary peaks – purely by way of a linear

analysis – by considering the general feedback arrangement of a plant P(s), a controller

K(s) and an actuator L(s), where we include a disturbance d at the input, and noise n

at the output:

− P (s)

L(s)

p

K(s)

d

n

Pcl(s) =
P(s)

1+K(s)L(s)P(s)
. (2.5)

Here s = iω is the Laplace variable. We look at two possible reasons for secondary

peaks. The first involves looking at the closed-loop transfer function (2.5): the closed-

loop system can exhibit peaks in its frequency response if the denominator of (2.5) is

close to zero at some frequency ωp. That is, setting s = iωp, if

K(iωp)L(iωp)P(iωp)≈−1. (2.6)

(a) (b)

FIGURE 2.4: Examples of secondary peaks seen in experimental studies: (a) taken from
Bloxsidge et al. (1988) (closed-loop case given by dashed line); and (b) taken from
Langhorne et al. (1990) (closed-loop case given by solid line).
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This secondary peak could correspond either to an unstable mode – which would then

be limited in amplitude by non-linearities – or to a stable, lightly damped mode that

is driven by external disturbances. This is essentially the explanation of secondary

peaks given by Fleifil et al. (1998), and motivates the use of both a good model of the

system and sophisticated controller design: if these are both available, then the ‘loop

gain’ K(s)L(s)P(s) can be shaped to make sure that the condition given by (2.6) is

not approached. (Although when large time delays are present in the system, avoiding

(2.6) at all frequencies is particularly challenging (Banaszuk et al., 1999).)

There is a second, less obvious reason for secondary peaks that was first explained

by Banaszuk et al. (1999) and by Cohen & Banaszuk (2003), who show that closed-

loop amplification of disturbances will necessarily occur at some frequencies for nar-

row bandwidth controllers. To explain this second cause, first consider how feedback

affects the amplification of disturbances d. Without control, the transfer function from

a disturbance to the measured pressure is simply P(s), whilst with feedback it becomes

P(s)/(1+K(s)L(s)P(s)). Therefore feedback modifies the open-loop transfer function

by the amount

S(s) =
1

1+K(s)L(s)P(s)
, (2.7)

which is known as the sensitivity function. If |S(iω)| < 1, then disturbances are at-

tenuated relative to open-loop, whereas if |S(iω)|> 1, then feedback amplifies distur-

bances. Ideally, one would like to design a compensator K(s) such that disturbances

are attenuated at all frequencies, |S(iω)|< 1, and one may hope that with a good model

of the system and a well-designed controller, this is possible. Unfortunately, Bode’s in-

tegral rule dictates that it is not. Under some quite general assumptions, Bode showed

that a decrease in the sensitivity over one frequency range must be balanced by an

increase in sensitivity over some other frequency range. More precisely, for a system

with a relative degree of at least two,1 Bode’s integral rule states that

∫
∞

0
log |S(iω)|dω = π ∑

k
Re(pk), (2.8)

where pk are the unstable poles of K(s)L(s)P(s). Therefore for a stable plant, any

1The relative degree of a transfer function is defined in § 2.6 (equation (2.9)).
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negative area (|S(iω)|< 1) in the log-linear plot of S(iω) versus ω must be balanced by

a positive area (|S(iω)|> 1) at some other frequency. For an unstable plant, ∑Re(pk) >

0, and the situation is even worse.

Bode’s area rule (2.8) is a fundamental limit of feedback control and, whilst not a

problem in itself, is made a problem by actuators with limited bandwidth. For an ac-

tuator with unlimited bandwidth, (2.8) poses no problem, since the positive sensitivity

can be spread over a large frequency range. If the actuator L(s) has limited band-

width, however, then log |S(iω)| necessarily approaches zero at high frequencies, and

any positive log |S(iω)| must occur within the bandwidth of the actuator. As a result

any actuator, as well as providing excitation at the frequency of open-loop oscillations,

ideally needs sufficient bandwidth so that the implications of (2.8) can be ‘spread out’

over a large frequency range.

If this is not possible, then secondary peaks can occur, even if an accurate model of

the combustor is available, and even if a well-designed controller is used. This second

source of secondary peaks, unlike the first, is not well-documented in the literature,

but it is likely to be a problem when limited-bandwidth fuel flow actuators are used for

control.

2.6 GENERAL PROPERTIES OF LONGITUDINAL COMBUSTION SYSTEMS

We now look at some general properties of longitudinal combustion systems which are

useful for feedback control purposes. These properties were derived by Evesque et al.

(2003b), and we will use them again in chapter 3 for the development of an adaptive

controller for annular combustor geometries.

Figure 2.5 shows a general (longitudinal) combustion system fitted with a closed-

loop controller. For feedback control, we assume that the feedback signal is a pressure

measurement at some point in the combustor, and that modulation of the fuel mass

flow rate is used for actuation.

Including the actuator in the open-loop transfer function of such a combustor,

Evesque et al. (2003b) made four non-restrictive assumptions about the combustor’s

open-loop dynamics:

(i) the pressure reflection coefficients at the upstream and downstream boundaries
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Ru Rd

p

Q′

Vc

Flame

Controller

Actuator Transducer

FIGURE 2.5: General combustion system with a feedback controller.

of the combustor satisfy

|Ru(s)|< 1, |Rd(s)|< 1,

i.e. the amplitude of a reflected wave at a boundary is smaller than the amplitude

of the incoming wave.

(ii) the flame has stable dynamics, i.e. instability only occurs because of interactions

between the flame and the combustor acoustics, and not because of any hydrody-

namic instabilities of the flame itself.

(iii) the flame response has a limited bandwidth.

(iv) the actuator dynamics has a relative degree not exceeding two and has no right-

half plane zeros.

By using a wave expansion of the acoustic field in the combustor, and by approx-

imating the time delays in the system using Padé approximants, Evesque formed an

open-loop transfer function for a longitudinal combustor of the form

P(s) = Po(s)e−sτ ,

where Po(s) is a rational approximation to the delay-free part of P(s) and can be written

as the ratio of two monic polynomials:

Po(s) = go
NP(s)
DP(s)

.
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Here go is the high-frequency gain of Po(s). The relative degree n∗ of Po(s) is then

defined as

n∗[Po(s)] = deg[DP(s)]−deg[NP(s)], (2.9)

which corresponds to the number of poles of Po(s) minus the number of its zeros.

Three properties of any actuated combustion system meeting assumptions (i–iv)

were then derived by Evesque:

PROPERTY 2.1. The zeros of P(s) are stable (i.e. in the left half-plane).

PROPERTY 2.2. The sign of the high-frequency gain of P(s) is given by the sign of the

high-frequency gain of the actuator transfer function.

PROPERTY 2.3. The relative degree of P(s) is given by the relative degree of the actuator

transfer function.

More details of the approach taken by Evesque et al. (2003b) – together with some

development of the approach for annular combustor geometries which is important for

chapter 3 – is given in appendix A.
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CHAPTER 3

ADAPTIVE CONTROL OF ANNULAR COMBUSTION SYSTEMS

In this chapter, an adaptive feedback controller derived using Lyapunov’s direct method

is developed for axisymmetric annular combustion systems. For such systems, mul-

tiple sensors and multiple actuators are needed and thus straightforward single-input

single-output approaches for longitudinal modes are no longer valid. The adaptive con-

troller is well-suited to real engine environments for three reasons: it is able to identify

and control both longitudinal and circumferential modes in annular combustors; it can

adapt to large changes in the engine’s operating conditions; and it does not require

prior characterization of the system.

The adaptive feedback controller is implemented computationally in a low-order

thermoacoustic network model (LOTAN) of an annular combustor and demonstrated

in time domain simulations. The adaptive controller stabilizes two different combus-

tion systems: one for which a circumferential instability only is present, and one with

both a circumferential and a longitudinal instability. The controller retains control

following a large change in the combustor operating conditions by re-tuning its adap-

tive parameters. Finally, a more easily implemented control arrangement with fewer

transducers and actuators is investigated, and it is seen that closed-loop stability is still

achieved.

3.1 INTRODUCTORY REMARKS ON CIRCUMFERENTIAL MODES

For a longitudinal combustor geometry, only plane waves transport acoustic energy,

and the pressure perturbation field (for example) can be written as a linear combination

21
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of upstream- and downstream-traveling waves:

p′(x, t) = A±eiωt+ik±x,

where x is the axial coordinate. A+ represents a downstream-propagating wave and A−
represents an upstream-propagating wave, and k+ and k− are the corresponding wave

numbers. For such a geometry, one actuator and one sensor suffice for feedback control

purposes. (The sensor must be axially well-placed to avoid nodes of the pressure mode

shape.)

For an annular combustor geometry, we must also consider azimuthal and radial

perturbations. For the annular geometries of interest in this chapter, the annular gap is

small, and the radial dependence can be ignored (Stow et al., 2002). Then the pressure

perturbation field can be described by

p′(x,θ , t) = A±eiωt+ik±x+inθ ,

where θ is the azimuthal angle and n is the circumferential mode number. This in-

troduces the possibility of circumferential modes: typical mode shapes are shown in

figure 3.1. An n = 0 mode corresponds to a longitudinal mode with no circumferential

dependence, and increasing n corresponds to increasing circumferential wave number.

For circumferential modes, the pressure mode shape may spin in time, or may be lo-

cated at a fixed azimuthal angle, and therefore one cannot guarantee that a single sensor

is not at a node. Similarly, one cannot guarantee that a single actuator will find itself in

a useful position for control. From these observations it is clear that multiple sensors

and multiple actuators are required for circumferential modes.

3.2 OPEN-LOOP TRANSFER FUNCTION FOR CONTROL PURPOSES

Figure 3.2 shows the open-loop linear transfer function for a combustion system in-

cluding actuator (where again s = iω is the Laplace variable). Although this transfer

function is not needed explicitly by the adaptive controller that we will develop, we

introduce it here to make clear the Multi-Input Multi-Output (MIMO) nature of the
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n = 0 n = ±1 n = ±2

FIGURE 3.1: Circumferential mode shapes for increasing values of n.

problem for annular combustors, before introducing a modal equivalent of this transfer

function in § 3.2.1.

Fuel valves will be used for actuation, since these are the most practical actuators

for large- and full-scale applications, and pressure transducers will be used for sens-

ing. For the annular combustor geometries that we will consider, several fuel valves

and several pressure transducers are spaced azimuthally around the combustor’s cir-

cumference. Then the overall open-loop transfer function is between the vector of

actuator voltages V = [V1 . . . VB]T and the vector of transducer pressure measurements

p = [p1 . . . pT ]T , where B is the number of burner ducts and T is the number of pres-

sure transducers. Referring to figure 3.2, f ∇, φ ∇, Q∇ and a∇ represent the fractional

change in the fuel mass flow rate, equivalence ratio, heat release rate and air mass flow

rate respectively. Bold type is used (as it is for V and p) to denote the vector-valued

parameters f∇, φ∇, Q∇ and a∇ (all of dimension B). Since all of the system inputs and

outputs are vectors, the four constituent transfer functions are matrices: L(s), F(s), and

H(s) are of dimension B×B, whilst G(s) is of dimension T×B. The overall open-loop

acoustics

H(s)

P (s)

L(s)

actuator

F (s)

flame

G(s)

acoustics

V f∇ φ∇

a∇

Q∇ p

FIGURE 3.2: Open-loop transfer function for an annular combustion system.
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transfer function is then

P(s) = G(s)(I +F(s)H(s))−1F(s)L(s) (3.1)

and has dimension T×B. For small perturbations, the fractional change in equivalence

ratio φ ∇ is related to the fractional change in fuel mass flow rate f ∇ and the fractional

change in air mass flow rate a∇ by φ ∇ = f ∇−a∇.1

3.2.1 MODAL OPEN-LOOP TRANSFER FUNCTION

The adaptive controller that we will develop can be applied to Single-Input Single-

Output (SISO) systems. The transfer function given by figure 3.2 and equation (3.1),

however, has potentially many inputs and many outputs, and we remedy this by devel-

oping a modal transfer function and a corresponding modal adaptive controller. This

simplifies the control problem from one for the MIMO system in figure 3.2 to one for a

SISO system, and relies on the combustor’s being axisymmetric and therefore having

decoupled modes. Morgans & Stow (2007) show that this modal transfer function is

given by

Pn(s) =
pn(s)
V n(s)

=
Lb(s)Fb(s)Gn(s)

B[1+Fb(s)Hn(s)]
, (3.2)

Fb(s) is the flame transfer function for a given burner b (which are forcibly all identical

for an axisymmetric combustor), whilst Lb(s) is the actuator transfer function for a

given burner b (assumed to be all identical).

Equation (3.2) for the modal transfer function Pn(s) is very similar to that given by

(3.1) for the single-input single-output case, which becomes

P(s) =
p(s)
V (s)

=
L(s)F(s)G(s)
1+F(s)H(s)

. (3.3)

It is for this single-input single-output case that Evesque et al. (2003b) derived the

three properties of longitudinal combustion systems (summarized in § 2.6) that are

useful for feedback control purposes, and upon which the proof of stability for the

1When normalized, φ = ( f /a)/( f /a)stoich becomes 1 + φ ∇ = (1 + f ∇)/(1 + a∇), which for small
perturbations is simply φ ∇ = f ∇−a∇.
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adaptive controller to be introduced relies.

Therefore before developing an adaptive controller for circumferential modes, we

must first ask if the modal transfer function (3.2) satisfies those same properties that

are satisfied in the SISO case (3.3). This question is addressed in appendix A, where

it is shown that the three properties derived by Evesque et al. (2003b) still hold for

the modal transfer function, if the additional assumption is made that the frequencies

of interest are well above the cut-off frequency.1 This extra assumption is used to

show that all of the zeros of Pn(s) are in the left half-plane. (Furthermore, for the two

combustor geometries that we will consider, we will see that all zeros of the open-loop

systems are in the left half-plane, and so Evesque’s property 2.1 concerning the zeros

is satisfied.)

3.3 LYAPUNOV ADAPTIVE CONTROL

The term adaptive control can be used to refer to many different control strategies

(Åström, 1987), but they all share the common goal of controlling dynamical systems

whose characteristics are not completely known.

Lyapunov-based adaptive control – so-called because of its foundations in Lya-

punov stability theory – is one such scheme for the adaptive stabilization of unknown

systems, and has found diverse applications including ship steering, flight control sys-

tems and flexible structures (Åström, 1983; Harris & Billings, 1981).

We now look at a Lyapunov-based adaptive controller for the adaptive stabiliza-

tion of combustion oscillations. For completeness, we first look at the specific case of

adaptive control of the class of combustion systems studied by Evesque et al. (2003b).

This adaptive controller is valid for longitudinal combustors, where one pressure trans-

ducer and one actuator suffice for control. We then develop the controller further for

application to annular combustion systems with axisymmetric geometries.

3.3.1 AN ADAPTIVE CONTROLLER FOR A CLASS OF COMBUSTION SYSTEMS

Annaswamy et al. (1998) looked at self-tuning regulators (also known as model-based

1The cut-off frequency is the frequency below which the acoustic modes are attenuated with distance
and carry no acoustic power – see appendix A for more details.
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adaptive controllers) for a specific longitudinal combustion system: for such systems,

one burner valve and one axially well-placed pressure transducer suffice for control. It

was then shown (Evesque et al., 2003b) that this control structure could be applied to

a whole class of combustion systems. Evesque et al. (2003a) extended the algorithm

to account for large time delays in the system by including a Smith-type controller

(Smith, 1959): we will confine our attention to the algorithm without Smith controller

here.

We consider an unstable open-loop transfer function (including actuator) P(s) which

can be stabilized using feedback control, and we denote this closed-loop stabilized

transfer function by P∗cl(s). It can be shown from root-locus arguments that, for the

class of combustion systems studied by Evesque et al. (2003b), a first-order compen-

sator of the form

K(s) = kc
s+ zc

s+ pc
(3.4)

is sufficient to provide closed-loop stability. The adaptive feedback controller that

we now consider finds stabilizing parameters for this first-order compensator. The

derivation of such an adaptive control algorithm relies on P∗cl(s) being Strictly Positive

Real (SPR).

If P∗cl(s) is SPR, it is possible to form a positive-definite Lyapunov function which

depends on the states (in a state-space sense) of P∗cl(s) and a vector of control param-

eters. Because the Lyapunov function is positive-definite, it can be thought of as an

energy function. The time derivative of the Lyapunov function is guaranteed to be

negative if the time derivative of the control parameters obeys a certain rule: this pro-

vides the updating rule for the control parameters. When this updating rule is used,

the Lyapunov function is guaranteed to decrease monotonically in time and the control

parameters are guaranteed to converge to a stabilizing set. The existence of such a

Lyapunov function – which depends on P∗cl(s) being SPR – is crucial for obtaining an

adaptation algorithm which guarantees stability.

P∗cl(s) being SPR requires that:

(i) P∗cl(s) has no right half-plane zeros (i.e. the closed-loop system is minimum

phase).
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(ii) The high-frequency gain of P∗cl(s) is positive.

(iii) Re[P∗cl(s)] > 0, ∀s, which is equivalent to the phase of P∗cl(s) lying in the range

−90◦ < ∠[P∗cl(s)] < +90◦.

For a more rigorous definition of an SPR transfer function, see Narendra & An-

naswamy (1989).

These requirements on the closed-loop stabilized system P∗cl(s) translate into re-

quirements on the open-loop system P(s). We now make these requirements on P(s)

clear, and show how they relate to the general properties of combustion systems that

were derived by Evesque et al. (2003b) and that were summarized in § 2.6.

(i) P∗cl(s) has no right half-plane zeros. Since feedback has no effect on the zeros of

a transfer function, this means that P(s) must also have no right half-plane ze-

ros. Evesque et al. (2003b) showed that this was met for longitudinal combustors

(property 2.1), and in appendix A it is shown that this is also true of circumferen-

tial modes when the frequencies of interest are well above the cut-off frequency.

We will also see that the transfer functions of the combustors studies in this chap-

ter contain no right half-plane zeros. (For extension to combustion systems with

right half-plane zeros, see Morgans & Annaswamy (2008).)

(ii) The high-frequency gain of P∗cl(s) is positive. For any feedback controller, P(s)

and P∗cl(s) have the same high-frequency gain. Therefore the high-frequency gain

of P(s) must also be positive, and this corresponds to Evesque’s property 2.2. For

adaptive control, however, we will see that it is enough to know the sign of the

high-frequency gain of P(s). (The case where the sign of the high-frequency gain

is unknown is the focus of chapter 4.)

(iii) Re[P∗cl(s)] > 0, ∀s. This places an upper bound on the relative degree of P∗cl(s).

Since P(s) and P∗cl(s) have the same relative degree, this upper bound also applies

to P(s). An SPR transfer function has a relative degree of at most one. By mod-

ifying the adaptive controller, however, it is possible to apply it to systems with

a relative degree not exceeding two, and this corresponds to Evesque’s property

2.3.
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We now look at the adaptive control problem for two cases: first for systems with a

relative degree of one; and then for systems with a relative degree not exceeding two,

where the relative degree n∗ of a transfer function P(s) is defined as the number of

poles of P(s) minus the number of zeros (see equation (2.9)).

Relative degree n∗ = 1

When n∗[P(s)] = 1 then n∗[P∗cl(s)] = 1 as well and P∗cl(s) is SPR.1 The adaptive con-

troller for such a system is shown in figure 3.3(a). We now define the control vector

k(t) = [k1(t) k2(t)]T and the data vector d(t) = [p(t) Vz(t)]T , where Vz(t) = V (t)
s+zc

, with

zc chosen and fixed. By defining k̃ = k−k∗, where k∗ denotes the k for which the

closed-loop system is stabilized, the total feedback signal can be written as kT d =

k∗T d + k̃T d. Using this expression, the closed-loop system can be represented as

shown in figure 3.3(b). Therefore the closed-loop system Pcl(s) at time t is identi-

cal to the closed-loop stabilized system P∗cl(s) with input disturbance −k̃T d, which

means that p(t) = P∗cl(s)[−k̃T d(t)]. In state-space form, this can be written as

ẋ(t) = Ax(t)+B[−k̃T (t)d(t)]

p(t) = Cx(t).
(3.5)

From lemma 2.4, Narendra & Annaswamy (1989), the strict positive realness of

P∗cl(s) assures the existence of a matrix Q = QT > 0 which satisfies

AT Q+QA =−R

QB = CT ,
(3.6)

where R also satisfies R = RT > 0.

We now want to find a Lyapunov function Λ(t) that is strictly positive and that

decays in time when the control parameters k(t) are updated correctly. The existence

of such a function will be used to prove the asymptotic stability of the closed-loop

1For the third condition Re[P∗cl(s)] > 0, the pole and zero pairs must also interlace in frequency.
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(a)
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k∗1

k∗2

− −

(b)

FIGURE 3.3: Block diagram of the adaptive controller: (a) the original block diagram, and
(b) the equivalent closed-loop stabilized system P∗cl(s) with input disturbance −k̃T d.

system. We choose this function to be quadratic in both x(t) and k̃(t):

Λ(t) = x(t)T Qx(t)+ k̃T (t)k̃(t)≥ 0.

Evaluating the time derivative of Λ(t) using (3.5) and (3.6) gives

Λ̇(t) =−xT (t)Rx(t)+2k̃T (t)[ ˙̃k(t)− p(t)d(t)],

and −xT (t)Rx(t)≤ 0, so choosing the updating rule and control law

k̇(t) = p(t)d(t) (3.7a)

V (t) =−kT (t)d(t) (3.7b)

ensures that Λ̇(t)≤ 0. It follows that k̃(t) and x(t) are bounded. Now (3.5) shows that

ẋ(t) is bounded. Finally lemma 2.12, Narendra & Annaswamy (1989) shows that x(t)

and therefore p(t) are guaranteed to converge asymptotically to zero.

In all of the above we have assumed that the high-frequency gain of the open-loop
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1
s + λ

s + λkT
−d −dλ V

FIGURE 3.4: Modification of the data vector d.

system is positive. If the high-frequency gain of the open-loop system is negative, then

the SPR arguments can be applied to −P∗cl(s) instead. Then a more general updating

rule for the adaptive parameters k(t) is given by

k̇(t) = sgn(go)p(t)d(t), (3.8)

where go is the high-frequency gain of P(s).

Relative degree n∗ = 2

The third SPR condition Re[P∗cl(s)] > 0 can only be met by n∗ = 1 systems. Therefore

for n∗ = 2 systems, P∗cl(s) is not SPR. For the right choice of λ , however, the transfer

function (s+λ )P∗cl(s) is SPR. Therefore Annaswamy et al. (1998) proposed modifying

the data vector d(t) as shown in figure 3.4. This modification makes the closed-loop

system SPR (whilst avoiding explicit differentiation of the data vector d(t)), and results

in a modified updating rule and control law

k̇(t) = sgn(go)p(t)dλ (t) (3.9a)

V (t) =−kT (t)d(t)− k̇T (t)dλ (t), (3.9b)

where dλ (t) is the modified data vector dλ (t) = 1
s+λ

d(t).

If k were held fixed, then both controllers (3.7) and (3.9) would correspond to the

first-order compensator

K(s) = k1
s+ zc

s+(k2 + zc)
.

Comparing this with (3.4), we see that k1(t) acts to tune the gain of the adaptive con-

troller, that k2(t) acts to tune the position of the controller’s pole, and that choosing zc
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corresponds to specifying the controller’s zero.

This adaptive controller has been applied previously to plane modes in a longi-

tudinal combustor, where one fuel valve and one pressure transducer suffice for con-

trol (Evesque, 2000; Evesque et al., 2003b; Riley et al., 2004). We will develop this

controller for circumferential instabilities in axisymmetric annular combustors, where

multiple fuel valves and multiple pressure transducers are required for control. First,

though, we derive expressions for the controller’s adaptation rates.

3.3.2 ADAPTATION RATES

For the adaptive control of real systems, some command over the rate of adaptation of

the controller is required: this can be achieved by introducing adaptation rates in (3.9a)

to give

k̇(t) = Γsgn(go)p(t)dλ (t), (3.10)

where Γ = diag(γ1 γ2) is a diagonal matrix containing the adaptation rates. Adaptive

control may at this point appear to be a Sisyphean task when the requirement to specify

k1 and k2 has been replaced by the requirement to choose two new parameters γ1 and γ2.

However, the permissible range of values for γ1 and γ2 is several orders of magnitude

greater than that for k1 and k2. Furthermore, expressions for γ1 and γ2 which are

functions of known parameters only will now be developed.

The adaptation rates can be set by specifying the desired speed of adaptation (Yildiz

et al., 2007). If the adaptive parameters start at zero, then this corresponds to 3τn for a

5 % band around the set point (where τn is the period of the unstable mode):

∣∣k̇1(t)
∣∣= |k

∗
1|

3τn
=
∣∣∣∣γ1 p(t)

p(t)
s+λ

∣∣∣∣
∣∣k̇2(t)

∣∣= |k
∗
2|

3τn
=
∣∣∣∣γ2 p(t)

Vz(t)
s+λ

∣∣∣∣ .
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Therefore at the instability’s frequency, s = iωn,

γ1 =
|k∗1||iωn +λ |

3τn p̂2

γ2 =
|k∗2||iωn +λ |

3τn|p̂V̂z|
,

where p̂ and V̂z are characteristic values of p(t) and Vz(t) respectively. Using an order

of magnitude analysis, one can arrive at expressions for the adaptation rates in terms of

the known parameters k∗1, ωn, zc and p̂. (It suffices to know only the order of magnitude

of each of these parameters.)

λ and ωn will be comparable in size, so we make the approximation |iωn +λ | 'ωn,

giving

γ1 =
|k∗1|ω2

n

6π p̂2 .

Determining γ2 is a little more involved, since expressions for k∗2 and V̂z are re-

quired. Using

Vz(t) =
V (t)
s+ zc

=
V (t)

iωn + zc

at the instability frequency, and

V (t) = k1
s+ zc

s+(zc + k2)
p(t)

V̂ ∼ k∗1 p̂,

together with

k2 = pc− zc

k∗2 ∼ ωn

(where−pc is the pole of the final stabilizing controller) gives a final expression for γ2

of

γ2 =
ω3

n

√
ω2

n + z2
c

6π|k∗1|p̂2 .

A final note on the choice of p̂: this will depend on whether or not a limit cycle
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is already present when control is activated. If the pressure perturbation is still grow-

ing when control is activated, p̂ is given by the (order of magnitude of the) pressure

perturbation that one wants the controller to allow: previous pressure perturbations of

smaller orders of magnitude than this will give rise to negligible rates of change of the

adaptive parameters in (3.10). If the pressure perturbation has already established a

limit cycle when control is activated, however, then the choice of p̂ is instead imposed

by the limit cycle’s amplitude.

These expressions provide a systematic way of choosing the adaptation rates, which

were previously chosen by trial-and-error.

3.4 MODAL ADAPTIVE CONTROLLER

We now look at adaptive control of circumferential modes in annular combustors. This

requires multiple pressure measurements and multiple fuel valves for feedback control,

and therefore MIMO control (Morgans & Stow, 2007).

Instead of using MIMO control techniques, the adaptive controller that we now

develop draws on the SISO adaptive controller already described, and relies on the

combustor having an axisymmetric geometry. (For a large number of equally-spaced,

identical burner valves, the combustor can still be considered axisymmetric with the

burners in place – see Akamatsu & Dowling (2001) or Evesque & Polifke (2002).)

The combustor’s axisymmetric geometry allows each unstable mode to be treated

separately as a single-input single-output system, with open-loop modal transfer func-

tion Pn(s) given by (3.2). Since the modal adaptive controller works in terms of modal

pressure pn(t) and modal voltage V n(t), we must find expressions relating the indi-

vidual actuator voltages Vb(t) and individual transducer pressures pt(t) to their modal

equivalents. For a combustor with B burners (with actuation at all burner locations),

and if the pressure perturbation at some downstream location is measured using T pres-

sure transducers equally-spaced around the combustor circumference, then the modal
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voltage and pressure can be found using

pn(t) =
1
T

T

∑
t=1

pt(θ , t)Φn
1(θ) pt(θ , t) =

N

∑
n=−N

pn(t)Φn
2(θ) (3.11)

V n(t) =
B

∑
b=1

Vb(θ , t)Φn
1(θ) Vb(θ , t) =

1
B

N

∑
n=−N

V n(t)Φn
2(θ), (3.12)

where

Φ
n
1(θ) =





1 n = 0

2cos(nθ) n > 0

2sin(nθ) n < 0

Φ
n
2(θ) =





1 n = 0

cos(nθ) n > 0

sin(nθ) n < 0.

(3.13)

The modal parameters pn(t) and V n(t) represent the discrete spatial Fourier trans-

forms of the transducer pressures pt(t) and actuator voltages Vb(t). A standing wave

representation is used because the controller parameters are updated in the time domain

(Stow & Dowling, 2009).1

From (3.13), the +n and −n modes are 90 degrees out of phase with each other for

a given n. Since Pn(s) is a SISO transfer function, the modal equivalent of the updating

law (3.10) and feedback control law (3.9b) can now be used:

k̇n(t) = Γnsgn(gn
o)pn(t)dn

λ
(t) (3.14a)

V n(t) =−[kn]T (t)dn(t)− [k̇n]T (t)dn
λ
(t). (3.14b)

Figure 3.5 shows the adaptive control procedure in pictorial form: at some time t,

the adaptive controller is provided with a vector of pressure measurements p(t). From

this, and using (3.11), a vector of modal pressures pn(t) is calculated. For each mode n,

the modal pressure is used in the updating law for the adaptive parameters (3.14a), and

the modal voltage resulting from this controller is calculated using (3.14b). Finally, the

vector of modal voltages Vn(t) is used to calculate the vector V(t) using (3.12), which

gives the voltage required at each burner.

1At a given moment in time, one cannot determine if a given mode shape is spinning in time or
not. Therefore although one could use a spinning wave decomposition, we choose standing waves here,
which make more sense conceptually.
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FIGURE 3.5: Modal adaptive control algorithm.

3.5 DESCRIPTION OF THE THERMOACOUSTIC NETWORK MODEL

LOTAN is a low order thermoacoustic network model developed by Dowling & Stow

(2003) for the simulation of longitudinal and annular combustion systems. Low order

modeling techniques are particularly attractive for annular combustors, owing to the

high cost of computational fluid mechanics and of large-scale experiments for such

geometries. The low order modeling approach is based on the fact that the main non-

linearity is in the combustion response to flow perturbations (Dowling, 1997). LOTAN

has been verified experimentally against both a sector rig (Stow & Dowling, 2001) and

an atmospheric test rig (Stow & Dowling, 2004). The combustion system is modeled

as a series of interconnected modules. Longitudinal ducts, annular ducts, combustion

zones and area changes are amongst the module types that can be modeled.

The model decomposes the flow into a steady mean axial component and small per-

turbations. The perturbations throughout the combustor are related via wave propaga-

tion, in which acoustic waves, entropy waves and vorticity waves are all included. The

flow conservation equations are used to track the evolution of these acoustic waves,

vorticity waves and entropy waves. A thin annulus is assumed: therefore axial and

azimuthal variations are considered, but radial variation of the flow parameters is ig-

nored. The connecting modules are modeled as acoustically compact, meaning that

their axial length is short in comparison to the acoustic wavelengths of interest. The

acoustic boundary conditions at the inlet and outlet of the combustor are assumed to

be known.

Combustion is assumed to take place at one axial location and to be acoustically

compact. The flame dynamics are modeled using a flame transfer function relating the

unsteady heat release Q to the fluctuation in equivalence ratio φ . This is motivated

by the fact that, for lean premixed prevaporized combustion, fluctuations in the inlet

fuel-air ratio have been shown to be the dominant cause of unsteady combustion – see,
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for example Richards & Janus (1998) or Lieuwen & Zinn (1998). Saturation bounds

are applied to the unsteady heat release: this saturation leads to non-linear behaviour

of the flame and the development of a limit cycle.

Calculations can be performed in both the frequency domain and the time domain

(Stow & Dowling, 2009). Frequency domain calculations can be either linear or non-

linear. For linear calculations, the values of complex frequency that satisfy both the

inlet and outlet boundary conditions are found: this complex frequency gives the fre-

quency of oscillation and growth rate of a given mode. Non-linear calculations can

be performed to find the frequency and amplitude of the limit cycle. In this case, a

non-linear flame transfer function (where the unsteady heat release rate saturates) is

used whilst keeping the rest of the model linear. The resulting limit cycle’s frequency

and amplitude can then be calculated.

In time domain simulations, the transfer functions (excluding the flame) are con-

verted to a Green’s function and combined with the non-linear time domain model of

the flame. Noise can be introduced into the system in the form of white noise super-

imposed on to the heat release at each burner, which acts to simulate turbulence and

promotes the growth of unstable modes.

The two combustor geometries considered are simple representations of a Lean

Premixed Prevaporized (LPP) aero-engine combustor, depicted in figure 3.6. Each

combustor is made up of an annular plenum connected to an annular combustor by a

number of equally-spaced premix ducts. Both combustor geometries are axisymmetric

and therefore modal coupling is absent – see Akamatsu & Dowling (2001), where pre-

mix ducts leads to coupling of radial modes only, and Evesque & Polifke (2002), where

circumferential modal coupling only occurs for non-identical premix ducts. Having

uncoupled modes means that forcing the valve voltage in circumferential mode n gives

rise to pressure fluctuations in circumferential mode n only.

For closed-loop control in LOTAN, actuation can be provided by fuel valves at

each of the ducts, and sensing can be achieved using pressure transducers positioned

downstream of the combustion zone.



3.6. ADAPTIVE CONTROL OF AN ANNULAR COMBUSTOR IN LOTAN 37

3.6 ADAPTIVE CONTROL OF AN ANNULAR COMBUSTOR IN LOTAN

Using LOTAN, time domain simulations of an annular combustor with the modal adap-

tive controller (3.14) are now investigated. Control is first demonstrated for a com-

bustor with a circumferential n = ±1 unstable mode only. It is then shown that the

adaptive controller maintains control following a large change in combustor operating

conditions. Then by modifying the combustor geometry, an additional n = 0 longitudi-

nal instability is introduced. The adaptive controller stabilizes this modified system by

simultaneously controlling the n = 0 and n = ±1 modes. Finally, a more practicable

feedback control arrangement with fewer transducers and actuators is investigated. It

is observed that the modal adaptive controller still provides stability with only three

transducers and three actuators in place.

3.6.1 COMBUSTOR GEOMETRIES

The combustor geometries used are the same as those used by Morgans & Stow (2007).

Details of the geometry can be found in figure 3.6, whilst key parameters of the com-

bustor are summarized in table 3.1. Twenty burners (B = 20) and twenty pressure

transducers (T = 20) are positioned uniformly around the circumference of the an-

nulus. A choked inlet and choked outlet are used for the upstream and downstream

boundary conditions.

TABLE 3.1: Summary of unstable combustor’s key parameters.

Air mass flow rate, ā = 100 kg/s

Combustion temperature, Tc = 2500 K

Number of fuel valves, B = 20

Number of pressure transducers, T = 20

Actuator transfer function,1 Lb(s) = 0.1e−2.0×10−4s

Flame transfer function, Fb(s) = 4.0e−1.5×10−3s

Flame saturation properties: Qsat = 0.4 Q̄
1 The fuel valve can saturate at some points in the cycle if the fuel

flow rate fluctuation exceeds the mean (at which point the overall

fuel flow rate can reach zero).
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FIGURE 3.6: Annular combustor geometry. All dimensions in metres. lc = 0.30 m for the
circumferential mode only case, and lc = 0.71 m for the multiple mode case. The plenum
inner and outer radii are 0.22 m and 0.38 m respectively. The combustion chamber inner
and outer radii are 0.25 m and 0.35 m respectively. The locations of the actuators and
transducers used in § 3.7 are shown in black.

A simple gain/time delay flame transfer function of the form Fb(s) = k f e−τ f s is

used with saturation bounds. The flame transfer function used is very similar in form

to that used by Bellucci et al. (2005). The gain k f represents the flame’s linear gain,

the time delay τ f represents the convection time from fuel input to combustion, and

the saturation bound Qsat represents the maximum fractional change in heat release

that can occur. According to this model, the heat release responds linearly to flow per-

turbations for small oscillations. For unstable modes, though, the growing amplitude

causes the heat release to saturate. This saturation results in non-linear behaviour of

the flame and a limit cycle. Armitage et al. (2004) discuss flame models in more detail.

3.6.2 SINGLE CIRCUMFERENTIAL MODE

The Bode diagram of the open-loop n =±1 transfer function P±1(s) is shown in figure

3.7 for frequencies up to 2000 Hz (note the linear frequency scale). This transfer func-

tion is found using LOTAN: referring to equation (3.2), Lb(s) and Fb(s) are prescribed,

whilst the modal transfer functions Gn(s) and Hn(s) are found in LOTAN by forcing



3.6. ADAPTIVE CONTROL OF AN ANNULAR COMBUSTOR IN LOTAN 39

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1080

−900

−720

−540

−360

−180

0

180

G
ai

n
[d

B
]

P
h
as

e
[d

eg
.]

Frequency [Hz]

FIGURE 3.7: Open-loop Bode diagram of the modal transfer function P±1(s).

their respective inputs over a discrete set of frequencies for the mode n of interest.

The poles of the system (3.2) correspond to the peaks of the Bode diagram: a phase

increase of 180◦ across a peak indicates an unstable conjugate pair of poles, whilst a

phase decrease of 180◦ indicates a stable conjugate pair (Dorf & Bishop, 2005). The

frequency and growth rate of the unstable mode are 521 Hz and 56.1 rad s−1. Figure

3.8 shows the limit cycle mode shape of the instability. The mode spins in time during

the limit cycle – an effect caused by the modal coupling introduced by the non-linearity

which is discussed in more detail by Schuermans (2003).1 From figure 3.7 it can be

seen that all of the zeros of the open-loop system are in the left half-plane. (Left

half-plane zeros induce an increase in phase, whilst right half-plane zeros induce a

reduction in phase.) Therefore assumption (i) concerning the position of the system’s

zeros is satisfied.

The parameter values used for the n = ±1 adaptive controller (in this and all

other test cases) are z±1
c = 11000 rad s−1, γ

±1
1 = 5.0× 10−14, γ

±1
2 = 1.0× 103, and

sgn(g±1
0 ) = +1. The time domain simulation of the closed-loop system with adaptive

controller is shown in figure 3.9. White noise is superimposed on to the mean heat

release at each burner – the amplitude of the noise is 20 % of the mean heat release

at each burner. Control is activated at 0.5 seconds, by which time a limit cycle has

1This modal coupling is only present during the non-linear limit cycle.
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FIGURE 3.8: Pressure mode shape of the n =±1 spinning mode (arbitrary scale).

established itself. The adaptive controller finds stabilizing modal control parameters

k±1 within approximately 0.2 seconds, and the pressure measurements are reduced to

the background noise level. The adaptive controller arrives at identical modal con-

trollers for the n =−1 (k−1) and n = +1 (k+1) modes: this corresponds to there being

equal amounts of each mode present in the spinning limit cycle. Figure 3.10 shows a

zoomed-in section of the time domain simulation for 0.70≤ t ≤ 0.72. Only three of the

twenty pressure measurements and actuated fuel mass flow rates are shown for clarity.

From the phase difference observed between these three pressure measurements, it is

clear that the mode shape is spinning in time when control is activated.

3.6.3 CHANGING OPERATING CONDITIONS

One of the distinct advantages of adaptive control is its ability to deal with large

changes in the plant transfer function. This is now demonstrated by varying the com-

bustor’s flame transfer function F(s) with time once control of the nominal plant has

been achieved. Specifically, the flame transfer function gain k f (refer to table 3.1) is

varied linearly from 4.0 to 5.2 over a 0.2 second period. Figure 3.11 shows the modal

adaptive controller’s response to this change in operating conditions. The adaptive pa-

rameters k±1(t) re-adapt and find a new stabilizing controller, and closed-loop stability

is maintained despite the change. Note that a fixed controller with the same parameters
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FIGURE 3.9: Adaptive control of the n = ±1 unstable mode. The upper two plots show
the measured pressure perturbation p′ and the actuated fractional fuel mass flow rate f ∇.
The lower two plots show the adaptation of the modal control vector kn(t) for n = +1
(——) and n =−1 (−4−).

as the original adaptive controller would have lost control following this change.

3.6.4 MULTIPLE UNSTABLE MODES

By increasing the combustion chamber’s length from 0.30 m to 0.71 m (see figure 3.6),

an n = 0 longitudinal instability is introduced, with the frequency and growth rate of

the n =±1 mode changing slightly. Table 3.2 shows the frequencies and growth rates

of the two modes, and figure 3.12 shows the two modes’ open-loop Bode diagrams.

Again, and for both transfer functions, all of the zeros are in the left half-plane, and so

assumption (i) concerning the position of the system’s zeros is satisfied.

The parameter values used for the n = 0 adaptive controller are z0
c = 11000 rad s−1,

γ0
1 = 1.5×10−15, γ0

2 = 3.0×102 and sgn(g0
0) = +1. The time domain simulation for
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FIGURE 3.10: Adaptive control of the n = ±1 unstable mode: zoomed-in section for
0.70 ≤ t ≤ 0.72. The upper two plots show the measured pressure perturbation p′ and
the actuated fractional fuel mass flow rate f ∇. Data for only three pressure transducers
and three actuators at azimuthal angles of θ = 0◦ (——), θ = 126◦ (−−−) and θ = 234◦

(—·—) are shown for clarity. The lower two plots show the adaptation of the modal control
vector kn(t) for n = +1 (——) and n =−1 (−−−).

the multiple unstable mode case is shown in figure 3.13. For no control whatever, the

longitudinal mode with the higher growth rate grows first and dominates the response

in the limit cycle. Thus only the longitudinal mode is present when control is activated

at 0.5 seconds. The modal adaptive controller arrives at stabilizing adaptive parameters

ko(t) after approximately 0.2 seconds. Following this the circumferential mode grows:

the adaptive parameters k±1(t) adapt accordingly and find a stabilizing controller. The

combustion system is completely stabilized.
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FIGURE 3.11: Time domain simulation of adaptive control of the n =±1 unstable mode.
Flame transfer function gain k f increased linearly from 4.0 at t = 1.0 s to 5.2 at t = 1.2 s.
Legend same as figure 3.9.

3.7 CONTROL USING FEWER TRANSDUCERS AND ACTUATORS

To ensure that the axisymmetry assumption still holds with the adaptive feedback con-

troller in place, twenty transducers and twenty actuators were used. From practical

considerations, though, this is a large number. Therefore it is interesting to investigate

TABLE 3.2: Frequencies and growth rates of the two unstable modes.

n Frequency [Hz] Growth rate [rad s−1]
0 616 16.0
±1 511 11.3
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FIGURE 3.12: Open-loop Bode diagram of the two modal transfer functions: Po(s) (——)
and P±1(s) (−−−).

the behaviour of the closed-loop system with fewer transducers and actuators in place.1

To construct the modal pressure vector pn = [p−N . . . p+N ]T from the vector of

measured pressures p = [p1 . . . pT ]T , the minimum number of transducers needed is

given by the maximum circumferential mode of interest N. Since one must ensure

that the transducers do not find themselves all simultaneously at pressure nodes of the

combustor, the minimum number of transducers required Tmin is given by Tmin = 2N +

1. A similar argument can be applied to the number of actuators to give Amin = 2N +1.

(It is worth noting that reducing the number of measurement points will not affect the

combustor’s axisymmetry, whilst reducing the number of actuation points will.)

Since it was assumed previously that actuation occurred at all burner locations

(i.e. A = B), the control voltage vector is now of reduced dimension V = [V1 . . . VA]T .

In this simpler case, (3.11) still holds: the modal pressure amplitudes pn are real quan-

tities and can still be deduced from a reduced number of pressure measurements. For

the control voltage, though, the modal voltage Vn is not being deduced from the ac-

tuator voltages V. Rather, for a given Vn, which is provided by the modal adaptive

controller (figure 3.5), we want to find the combination of actuator voltages V which

1Although the number of actuators is reduced, the combustor still has twenty burners: the reduction
means that closed-loop actuation is only taking place at some rather than all burner locations.
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FIGURE 3.13: Time domain simulation of adaptive control of the n = 0 and n = ±1
unstable modes. The upper two plots show the measured pressure perturbation p′ and the
actuated fractional fuel mass flow rate f ∇. The lower two plots show the adaptation of the
modal control vector kn(t) for n = 0 (——), n = +1 (−−−) and n =−1 (—·—).

best approximates this modal voltage. Therefore instead of the discrete Fourier trans-

form pair in (3.12), we simply write

Va(θ , t) =
1
A

N

∑
n=−N

V n(t)Φn
2(θ).

For the combustor considered N = 1, so Tmin = Bmin = 3 and therefore we use three

actuators and three transducers. Figure 3.6 shows the location of the three actuators

and three transducers, which are at azimuthal angles of 0◦, 126◦ and 234◦.

Figure 3.14 shows time domain results for this simpler control arrangement, ap-

plied to the combustion geometry with the n =±1 unstable mode only (as in § 3.6.2).

All other control parameters are the same as those used in § 3.6.2. Comparison with
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FIGURE 3.14: Time domain simulation of adaptive control using fewer transducers and
actuators. The upper two plots show the measured pressure perturbation p′ and the ac-
tuated fractional fuel mass flow rate f ∇. The lower two plots show the adaptation of the
modal control vector kn(t) for n = +1 (——) and n =−1 (−−−).

figure 3.9 reveals the behaviour of this simpler arrangement and the fully-instrumented

arrangement to be very similar. The most obvious difference is the increased magni-

tude of the fuel mass flow rate actuation required for control, which in this simpler case

is 15 % of the mean, compared with 3 % of the mean in figure 3.9. This is explained

by the greater control authority required at each actuation point when the total num-

ber of actuators is reduced. One also observes that the time required for the adaptive

parameters kn to settle to stabilizing values is greater, in particular for the n =−1 cir-

cumferential mode. Finally, the discrepancy between the final control vectors k−1 and

k+1 is greater than that seen in figure 3.9. Nevertheless, both modal controllers arrive

at stabilizing control parameters and the combustion system is stabilized.
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3.8 CONCLUDING REMARKS

In this chapter, two properties of unstable aero-engine combustion systems that com-

plicate their stabilization have been addressed: their annular geometry and therefore

their propensity for circumferential modes; and their potential for large changes in op-

erating conditions. For these reasons the adaptive controller presented is well-suited to

real engine environments.

We finish by remarking that the adaptive feedback controller considered operates

outside of the restrictions placed upon it in its theoretical development. The Lyapunov-

based stability analysis of § 3.3 is valid only for linear plants, and yet control is acti-

vated from within a non-linear limit cycle. The SISO analysis used in § 3.2.1 also

relies on an axisymmetry assumption, and yet the adaptive controller of § 3.7 clearly

neglects this assumption. (Although the controller of § 3.6 respects it.)
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CHAPTER 4

ADAPTIVE CONTROL FOR UNKNOWN CONTROL DIRECTION

One of the fundamental (and troublesome) requirements of classical, Lyapunov-based

adaptive control is that the sign of the high-frequency gain of the system must be known

(Narendra & Annaswamy, 1989). Since time delays are always present in combustion

systems, they are of infinite dimension. Therefore the sign of the high-frequency gain

is never known a priori and must somehow be determined. For this reason a controller

that does not require this information presents advantages for the adaptive control of

combustion oscillations.

In this chapter, an adaptive feedback controller is applied to a simple unstable com-

bustion system: the Rijke tube. The controller does not require knowledge of the sign

of the high-frequency gain of the system, and this represents the first experimental

demonstration of such a controller. Control is maintained following a large change in

operating conditions, brought about by increasing the length of the Rijke tube after

control of the nominal system has been achieved.

4.1 IMPORTANCE OF THE HIGH-FREQUENCY GAIN

At the heart of Lyapunov-based adaptive control are three assumptions. If the open-

loop system has transfer function P(s), and if we write P(s) as the ratio of two coprime,

monic polynomials

P(s) = go
NP(s)
DP(s)

,

then the three conditions placed on P(s) are (Narendra & Annaswamy, 1989)

(i) The sign of the high-frequency gain go is known.

49
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(ii) The relative degree n∗ of P(s) is known.1 (I)

(iii) The zeros of P(s) are all stable (i.e. the system is minimum phase).

It is the first condition that we concern ourselves with here. For many systems, the

sign of the high-frequency gain (whose physical significance is given in the following)

is obvious from the physics of the problem, and so providing it poses no problem. For

combustion systems, however, which are infinite-dimensional, the sign of the high-

frequency gain of the system is unknown and must be determined. (The phase of such

a system evolves indefinitely with frequency, and so the sign of its high-frequency gain

is not well-defined.)

4.1.1 PHYSICAL SIGNIFICANCE OF THE HIGH-FREQUENCY GAIN

To demonstrate the physical significance of the high-frequency gain, we now look at a

simple first-order unstable system whose transfer function is

P(s) =
y(s)
u(s)

=
go

s−a
, (4.1)

where u is the system input, y is the system output, s = iω is the Laplace variable, go is

the high-frequency gain of the system and a (which is positive for an unstable system)

corresponds to the location of the system’s (only) pole.

In the time domain, this corresponds to the first-order differential equation

ẏ(t) = ay(t)+gou(t).

Looking at ẏ(t) for small time using the initial value theorem, and for a unit step input

u(s) = 1/s:

lim
t→0

ẏ(t) = lim
s→∞

s2y(s)

= lim
s→∞

s2 1
s

go

s−a

= go.

1The relative degree is defined as n∗ = deg[DP(s)]−deg[NP(s)].
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Therefore knowing the sign of the high-frequency gain corresponds to knowing,

in the time domain, the sign of the system’s ‘instantaneous gain’: that is, knowing

whether the system’s response to a positive unit step input is positive or negative for t

sufficiently small. More generally, for an nth order system with a relative degree of n∗,

the same analysis can be applied to the (n∗)th derivative of the output, y(n∗).

4.1.2 IMPORTANCE FOR FEEDBACK CONTROL

We can see the significance of go for feedback control by again considering the simple

first-order unstable system (4.1), this time remaining in the frequency domain through-

out. If we introduce a feedback gain as shown in figure 4.1, the overall closed-loop

transfer function Pcl(s) is (negative feedback convention)

Pcl(s) =
P(s)

1+ kP(s)

=
go

s+(kgo−a)
.

Since the controller gain k acts to stabilize the system by moving the closed-loop

system’s pole into the left half plane (i.e. by making the term (kgo− a) positive), we

see that the gain k must be both of the correct sign (so that the product kgo is positive)

and sufficiently large kgo > a. Therefore the sign of go dictates the sign of k required

for closed-loop stability. Again, this result still holds true for an nth order system, as

long as it has a relative degree n∗ of one. (It can be shown, using root locus arguments,

that any minimum phase system with a relative degree of one can be stabilized using a

feedback gain alone.)

P (s)

k

u y
−

Pcl(s)

FIGURE 4.1: Feedback arrangement using a feedback gain k.
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4.1.3 IMPORTANCE FOR LYAPUNOV-BASED ADAPTIVE CONTROL

We now look at how these arguments apply to Lyapunov-based adaptive control. A

system of relative degree one that satisfies the three conditions (I) can be stabilized

using just a feedback gain k (Dorf & Bishop, 2005). We have seen that this feedback

gain needs to be (i) of sufficient magnitude and (ii) of the right sign. For a Lyapunov-

based adaptive controller, the second condition must be provided (see the updating law

in (3.9a), for example). Then the adaptive controller is guaranteed to meet the first

condition and provide closed-loop stability.

Although we have already seen in chapter 3 how sgn(go) is used in the updating

law for Lyapunov-based adaptive control (see equation (3.8), for example), we look

specifically at the feedback gain only case here for ease of exposition. In this case, the

sign of the high-frequency gain of the system is used to form an adaptive controller

with updating rule and control law

k̇(t) = sgn(go)y2(t) (4.2)

u(t) =−k(t)y(t), (4.3)

which guarantees stability of the closed-loop system. It is clear how the sgn(go) is used

in (4.2) to decide in which direction to update the control gain k.

4.2 ADAPTIVE CONTROL USING A NUSSBAUM GAIN

Morse (1983) suggested that knowledge of the sign of the high-frequency gain was in-

trinsic: in particular, that a linear plant cannot be stabilized without knowledge of the

sign of go. Nussbaum (1983) proved this conjecture for first order rational controllers.

More importantly, however, by using a non-rational term he constructed a globally

adaptively stabilizing controller for a first order system which did not rely on knowl-

edge of the sign of go. The work of Willems & Byrnes (1984) extends Nussbaum’s

result to any minimum-phase system with a relative degree of one.

The controllers used by Nussbaum (1983) and by Willems & Byrnes (1984) both

incorporate a Nussbaum gain N(k). Willems & Byrnes (1984) show that for the control
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of a minimum phase system with a relative degree of one, any function N(k) which

satisfies the conditions

sup
k>0

1
k

∫ k

0
N(σ)dσ = ∞

inf
k>0

1
k

∫ k

0
N(σ)dσ =−∞

(4.4)

is a Nussbaum gain and guarantees closed-loop stability when the sign of the high-

frequency gain is unknown. Such a Nussbaum gain can be used with the updating rule

and control law

k̇(t) = y2(t)

u(t) =−N(k)y(t)

to adaptively stabilize the system. These are very similar to the updating rule (4.2) and

control law (4.3) for the Lyapunov controller. The key difference is that the Nussbaum

gain – and the conditions placed upon it – remove the need for knowledge of sgn(go).

Functions satisfying (4.4) are a type of switching function. The review paper of

Ilchmann (1999) gives some examples of such functions, including:

N1(k) = k2 cosk

N2(k) =

{
k if n2 ≤ |k|< (n+1)2, n even

−k if n2 ≤ |k|< (n+1)2, n odd.

It is now clear how the Nussbaum gain achieves control without knowledge of the

sign of the high-frequency gain. The conditions imposed upon a Nussbaum gain (4.4)

mean that it sweeps across both positive and negative gains, whilst also increasing in

magnitude with increasing k. Provided that this occurs, the system can be stabilized

without knowledge of sgn(go): in contrast to the Lyapunov-based adaptive controller,

a Nussbaum gain automatically meets both requirements for closed-loop stability.

In closed-loop control, unnecessarily high feedback gains are to be avoided, not

least because they can place high demands on the actuator, and because they can lead
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to excitation of other modes of the system. Using a Nussbaum gain which is a smooth

function helps to alleviate any high gain behaviour of the Nussbaum gain. Furthermore,

one can help to ensure that the final stabilizing Nussbaum gain, N∗, is in the vicinity

of the minimum required, and not significantly larger, by observing that the Nussbaum

gain only need switch sign once, if at all. This is explained more fully in appendix D,

where choosing the adaptation rate µ (introduced later in equation (4.7)) is discussed.

4.3 NUSSBAUM GAIN ADAPTIVE CONTROL APPLIED TO A RIJKE TUBE

We now look at applying a Nussbaum-gain adaptive controller to a simple laboratory-

scale experiment: the Rijke tube. We will see that the controller is able to stabilize

the system without knowledge of sgn(go), and that the controller is robust to changing

operating conditions. To the author’s knowledge, it represents the first experimental

results for a Nussbaum-type adaptive controller.

4.3.1 EXPERIMENTAL ARRANGEMENT

The Rijke tube provides a simple means of generating combustion oscillations on a

laboratory scale. It consists of a vertical cylindrical tube open at both ends, with a heat

source inside the tube some distance from the lower end. Large-amplitude acoustic

oscillations are excited when the heat source is in the lower half of the tube (Howe,

1998).

Active control has previously been demonstrated on a Rijke tube (Dines, 1983;

Lang et al., 1987; Heckl, 1988). It has been observed that the system can be stabilized

using a feedback gain alone (i.e. phase compensation is not required), and so the Rijke

tube provides a suitable test-bed for a Nussbaum-gain adaptive controller.

The Rijke tube used consists of a cylindrical quartz tube of length 750 mm and di-

ameter 44 mm inclined vertically as shown in figure 4.2(a). A propane-fuelled Bunsen

burner provides a laminar flame which is stabilized on a grid 210 mm above the bottom

of the tube. In the absence of control, the Rijke tube exhibits oscillations at a frequency

of 244 Hz.

Measurement of the pressure perturbation (denoted p) is provided by a microphone
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FIGURE 4.2: Experimental set-up of the Rijke tube: (a) schematic; and (b) corresponding
block diagram.

fitted to a tube tapping situated 410 mm from the bottom of the tube. The semi-infinite

line technique is used to obtain thermal insulation without distortion from acoustic

reflections. Actuation is achieved using a 50 W low-frequency loudspeaker (with the

control voltage to the loudspeaker before amplification denoted V – see figure 4.2(a))

situated close to the lower end of the tube. The loudspeaker exhibits a flat frequency

response over the frequency range of interest (50–2000 Hz). Outside of this range, its

dynamics becomes more complicated. To eliminate this dynamics, a bandpass filter is

applied to the microphone signal with a pass-band from 50 Hz to 2000 Hz.

4.3.2 NUSSBAUM ADAPTIVE CONTROLLER

The Rijke tube can now be treated like the general plant described in § 4.2, where the

microphone voltage V corresponds to the system input u, and the pressure perturbation

p corresponds to the system output y. This is seen more clearly in figure 4.2(b), where

an arrow crossing a circle indicates an adaptive parameter. The updating rule and
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control law for the adaptive controller are

k̇(t) = γ p2(t) (4.5)

V (t) =−N(k)p(t), (4.6)

and the Nussbaum gain used is

N(k) = k cos(µ|k| 14 ), (4.7)

with γ = 100 and µ = 0.53. Here γ and µ are the adaptation rates of the controller,

explained in more detail in appendix D.

The theoretical development of the Nussbaum gain in § 4.2 ignores the influence of

noise in the system. Since noise will always be present in the pressure measurement p

(even when the system has been stabilized), we see from (4.5) that k(t) will never be

stationary. This problem can be solved by introducing a dead-zone into the updating

rule (Ioannou & Sun, 1996). With this modification, k(t) is only updated if the pressure

p exceeds some pre-defined limit (which is chosen based on the magnitude of the noise

in the system). The updating rule for k(t) then becomes

k̇(t) =

{
γ p2(t) |p(t)| ≥ Pdeadzone

0 |p(t)|< Pdeadzone.
(4.8)

We choose Pdeadzone = 0.04 in this particular case, which is about 5 % of the limit-cycle

amplitude.

This adaptive control algorithm is implemented on a TI C6713DSK DSP board

with ADC and DAC evaluation modules (an ADS8361EVM and a DAC7731EVM).

The pressure measurement p and control voltage V are recorded using a PC-based

data acquisition system. The sampling frequency for both the DSP board and the data

acquisition system is 5000 Hz.
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4.4 EXPERIMENTAL RESULTS

Two sets of experimental results are now presented. First, for fixed operating condi-

tions, the Nussbaum controller achieves control even when it is first updated in the

wrong direction. Second, we study the robustness of the controller by changing the

length of the Rijke tube after control of the nominal system has been achieved. The

controller maintains control following this change.

4.4.1 FIXED OPERATING CONDITIONS

Figure 4.3(a) shows adaptive control results when the Nussbaum gain is initially up-

dated in the right direction. The pressure perturbation has already established a limit

cycle when control is activated at t = 0.2s. Since the Nussbaum gain is initially up-

dated in the right direction, the cosine term in the Nussbaum gain (4.7) does not switch

sign. Hence in this case the controller behaves in a similar way to a Lyapunov-based

adaptive controller, and the growth of the Nussbaum gain N(k) is very similar to that

of the adaptive parameter k.1 Within approximately 0.5 s of control being activated,

the controller finds a stabilizing gain N∗, and the system is stabilized.

Figure 4.3(b) shows adaptive control results when the Nussbaum gain is initially

updated in the wrong direction. The impact of this is clear: when control is first ac-

tivated at t = 0.2 s, the Nussbaum gain N(k) causes the Rijke tube’s limit cycle to

actually increase in amplitude. Soon after, however, the Nussbaum gain changes sign

and finds a stabilizing gain N∗ which is both of sufficient magnitude and of the right

sign. The system is stabilized within approximately 0.4 s of control being activated.

The value of the Nussbaum gain used in this case is 2.10, compared with 1.78 in figure

4.3(a).

4.4.2 VARYING OPERATING CONDITIONS

We now look at the robustness of the adaptive controller by increasing the length of the

Rijke tube after control of the nominal plant has been achieved. The length of the tube

is increased from 770 mm to 870 mm using a variable length attachment, which causes

1k starts from zero here (i.e. k(0) = 0), which is true for all three experiments.
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FIGURE 4.3: Experimental results for fixed operating conditions: with (a) N(k) initially
updated in the right direction; and (b) N(k) initially updated in the wrong direction. In both
cases the measured pressure perturbation, control voltage and Nussbaum gain are shown.
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FIGURE 4.4: Experimental results for varying tube length (N(k) initially updated in the
wrong direction): (a) tube length increased at approximately 18 s; and (b) zoomed-in plot
of the controller’s re-adaptation following the change in length. In both cases the measured
pressure perturbation, control voltage and Nussbaum gain are shown.
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a shift in frequency of the unstable mode from 238 Hz to 214 Hz.1 Results are shown in

figure 4.4(a), where control is activated at t = 0.2 s, again from within the limit cycle.

The Nussbaum controller finds a stabilizing gain within approximately 0.4 s.

After approximately 18 s, the length of the Rijke tube is suddenly increased. The

Nussbaum gain is no longer stabilizing for this new length, but the controller re-adapts

and finds a new stabilizing gain. This is seen more clearly in figure 4.4(b) which shows

a zoomed-in section of figure 4.4(a). Here the time axis starts just before the length of

the Rijke tube is increased.

4.5 CONCLUDING REMARKS

This chapter has focused on adaptive control of combustion oscillations in a simple

experiment, and considers the adaptive control problem when the sign of the high-

frequency gain (or ‘control direction’) is unknown.

The proof of stability of the Nussbaum gain is for systems with a relative degree of

one. In the experiments, however, it adaptively stabilizes a gain-stabilizable system:

these two conditions are not equivalent (indeed, based on the observations made in

chapter 2, we expect the actuated Rijke tube to have a relative degree not exceeding

two).2 Furthermore, the proof is valid only for linear systems, while in the experiments,

the controller establishes control from within the Rijke tube’s pressure limit cycle. It

is clear, then, that the Nussbaum controller is capable of adaptive stabilization outside

of the restrictions placed upon it in its theoretical development.

1This first tube length is slightly longer than that for the fixed operating conditions case in § 4.4.1,
owing to the geometry of the variable length attachment.

2For minimum-phase systems, the class of n∗= 1 systems is a subset of the class of gain-stabilizable
systems, and so a n∗ = 1 condition is more restrictive than a gain-stabilizable condition.



CHAPTER 5

DYNAMICS OF CAVITY OSCILLATIONS

In this chapter the compressible flow past a two-dimensional rectangular cavity is con-

sidered. We focus on the dynamics that are important for feedback control purposes.

An historical perspective to the problem is first given. Direct numerical simulations

are then used to find the open-loop transfer function of the cavity flow between a body

force near the cavity’s leading edge and a pressure measurement at some point inside

the cavity. The results are compared to those given by a simple linear model of the

cavity flow, which is intended to be useful for feedback control design. The choice

of parameters for this linear model is based on flow data from the direct numerical

simulations. We finish by deriving some general properties of the cavity flow that are

useful for feedback control, and that will be used for adaptive control in chapter 6.

5.1 INTRODUCTION AND HISTORICAL PERSPECTIVE

Cavity flows are another example of a self-sustained oscillation, and can occur in a

wide variety of guises, including the flow past a sunroof in an automobile, and the flow

past aircraft landing gear wells and weapons bays.

The basic configuration of a cavity flow is shown in figure 5.1. We consider the

compressible flow past shallow cavities. The mechanism leading to self-sustained os-

cillations in such cavities is as follows: the shear layer formed at the cavity’s upstream

corner amplifies disturbances as they convect downstream, which are then scattered

into pressure fluctuations at the cavity’s downstream corner. These pressure fluctua-

tions propagate back upstream, and excite further disturbances in the shear layer via a

61
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shear layer acoustic waves

flow

FIGURE 5.1: Basic configuration of a cavity flow.

receptivity process, creating a feedback loop. For suitable phase change of the distur-

bance, resonance occurs.

Cavity flows were studied as early as the 1950s by Roshko (1955) and Krishna-

murty (1956), but the flow-acoustic resonance phenomenon was first described by

Rossiter (1964). (A similar model had previously been proposed by Powell (1953)

for edge tones.) Rossiter provided a semi-empirical formula for the prediction of the

resonant frequencies, which are often referred to as the Rossiter tones. More details

about the physics of cavity flows can be found in the review articles of Rockwell &

Naudascher (1978), Blake & Powell (1986) and Colonius (2001).

Strategies to eliminate cavity oscillations can be split into two broad categories:

passive control and active control. We define these two broad classes of control as we

did in chapter 2 (figure 2.2). Passive control studies have typically involved geometry

modifications such as spoilers, fences and ramps (Heller & Bliss, 1975). Active, open-

loop control studies date back to Sarohia & Massier (1977), who used steady mass

injection at the base of the cavity, but later studies have typically involved forcing the

shear layer near the cavity’s upstream corner (Sarno & Franke, 1994; Stanek et al.,

2000).

A renewed interest in cavity flows in recent years is in part due to the possibil-

ity of using feedback (or ‘dynamic’) control to suppress oscillations. The idea of

using feedback to suppress cavity oscillations is not new (Gharib, 1987), but many

of the earlier studies used simple (trial-and-error) phase-locked controllers (Shaw &

Northcraft, 1999; Williams et al., 2000), which do not use models of the cavity flow

dynamics. More recently, model-based feedback control has been promoted (Rowley
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et al., 2006): dynamical models of the cavity flow have typically been found using

either system identification methods (Kook et al., 2002; Kegerise et al., 2007a,b) or

the Proper Orthogonal Decomposition (Samimy et al., 2007), and standard techniques

such as Linear Quadratic control (Cabell et al., 2006) and H∞ loop shaping (Yan et al.,

2006) have been used for controller design. For an excellent recent review of the con-

trol of cavity oscillations, see Cattafesta et al. (2008).

Although many studies on feedback control of cavity oscillations already exist,

many of the system identification procedures have been performed for the open-loop

unstable system, which means that the linear dynamics are masked by non-linearities

which will inevitably appear. Furthermore, the linear modeling approach proposed by

Rowley et al. (2006) has not been fully explored. Since the validity of a linear model is

crucial for the design of an effective model-based feedback controller, we make finding

an accurate linear model our priority in this chapter. We then compare this dynamical

model – found directly from direct numerical simulations using system identification

techniques – to that given by the simple linear model proposed by Rowley et al. (2006).

5.2 CAVITY GEOMETRY AND NUMERICAL METHOD

The two-dimensional, compressible flow past a rectangular cavity is considered. The

flow conditions are for a Mach number M = 0.6, length to depth ratio L/D = 2.0,

a Reynolds number based on momentum thickness θ at the cavity leading edge of

Reθ = 56.8, and L/θ = 52.8.

The flow is solved using direct numerical simulation. The Navier-Stokes equations

are non-dimensionalized according to the usual compressible non-dimensionalization

– see Rowley (2001) for details. The simulations have been carefully validated using

grid resolution and boundary placement studies, together with comparison with exper-

imental data (Rowley et al., 2002). The simulation uses 240× 96 grid points inside

the cavity and 1008× 384 grid points above the cavity, which is sufficient to resolve

all scales at this Reynolds number.

At these conditions, the flow develops into a limit-cycle, with the two most ener-

getic peaks in the spectra occurring at Strouhal numbers of 0.40 and 0.70. These peaks

are in reasonable agreement with the first two modes predicted by the semi-empirical
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formula of Rossiter (1964):

Stn =
fnL
U

=
n− γ

M +1/κ
, n = 1,2, . . . , (5.1)

which predicts the first two modes at Strouhal numbers of 0.32 and 0.74. Here n is

the mode number, and κ and γ are empirical constants corresponding to the average

convection speed of disturbances in the shear layer and a phase delay. γ = 0.25 and

1/κ = 1.75 are typical values, and the values used here.

5.3 SYSTEM IDENTIFICATION OF THE CAVITY FLOW

We now look at finding the open-loop transfer function of the cavity flow. Since the

open-loop system is unstable, the cavity must first be stabilized so that the linear open-

loop transfer function can be found. Stability is achieved by using a dynamic phasor

model, developed for the cavity flow by Rowley & Juttijudata (2005). This dynamic

phasor postulates a low-order model that captures the relevant dynamical features of

the non-linear, limit-cycling flow using

ṙ(t) = σr(t)−αr3(t)

θ̇ = ω,

which describes oscillations at a frequency ω , with constants α > 0 and σ > 0. Then

the origin (r = 0) is unstable, and there is a stable periodic orbit given by r =
√

σ/α .

For this model, Rowley & Juttijudata (2005) consider a controller whose control signal

is a sinusoid at the same frequency as the natural flow, with suitably chosen phase, and

slowly varying amplitude. This control signal makes the origin (r = 0) globally attract-

ing, at least for the model. It was found that this controller eliminated oscillations in

direct numerical simulations, and so we use it for the current system identification.

Figure 5.2(a) shows the cavity geometry. Actuation is provided by a body force ρv

– where ρ is the fluid density and v is a velocity component which is perpendicular to

the free-stream – positioned in the shear layer a distance L/20 from the cavity upstream

corner. Three pressure sensors are used in total and measure the pressure half-way up
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FIGURE 5.2: System identification: (a) the cavity geometry showing the location of the
body force and the pressure sensors, and (b) the corresponding closed-loop block diagram.

the upstream wall (denoted p1), half-way along the cavity floor (denoted p2) and half-

way up the downstream wall (denoted p3).

Figure 5.2(b) shows the feedback arrangement used for system identification. The

pressure measured on the downstream wall (p3) is used as the feedback signal for

the dynamic phasor. The total body force at the input is given by ρvc = ρvw− ρv f

(negative feedback convention), where ρvw is a broadband forcing signal and ρv f is

the feedback control signal from the dynamic phasor.1 Taking the total body force ρvc

and the pressure vector p = [p1 p2 p3]T as the system input and output, the cavity’s

open-loop transfer function P(s) = [P1(s) P2(s) P3(s)]T can be found, where

[p1 p2 p3]T = [P1(s) P2(s) P3(s)]T ρvc.

(If instead the broadband signal ρvw was used as the system input, the closed-loop,

stabilized transfer function would be recovered.)

Using ρvc and p as the input-output pair as described, spectral analysis can be

used to find the cavity’s open-loop transfer function. Tests were performed to ensure

that the forced cavity was behaving linearly for the forcing amplitudes used. This was

achieved using a sum of two sinusoids at the input, the frequencies of which were

chosen to match the frequencies of the two unstable modes, since it was reasoned that

non-linearities were most likely to first appear when forcing at these frequencies.

The open-loop transfer functions found for the three sensor locations are shown

in figure 5.3. At all three pressure probe locations, the first three Rossiter modes are

1ρvw is band-limited to avoid aliasing – where high frequency components can masquerade as lower
frequencies. Despite this, its bandwidth still extends well above the frequencies of interest.
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FIGURE 5.3: Transfer functions measured from direct numerical simulations: (a) for pres-
sure probe 1, P1(s); (b) for pressure probe 2, P2(s); and (c) for pressure probe 3, P3(s).
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seen at Strouhal numbers of 0.40, 0.70 and 0.98. These values agree with those found

by Rowley et al. (2002) for a Mach number of 0.6, and show reasonable agreement

with Rossiter’s formula (5.1), which predicts Strouhal numbers of 0.32, 0.74 and 1.17.

The phase increase seen across the first and the second Rossiter modes indicates that

these two modes are unstable (Dorf & Bishop, 2005), which explains their dominance

in the open-loop spectra. The third Rossiter mode is stable, since one observes a phase

decrease across it.

We note briefly here the identified system’s time delay. Since the transfer function

of a pure time delay of duration τ is e−sτ , a time delay introduces a negative gradient to

a transfer function’s phase: from this gradient, a system’s time delay can be deduced.

The time delay seen at high frequencies in figure 5.3 will be explained in more detail

in § 5.4.3.

5.4 LINEAR MODELS FOR CONTROL OF CAVITY OSCILLATIONS

Rowley et al. (2006) propose a linear model for cavity oscillations. The model, com-

posed of four constituent transfer functions, is of low-order and is intended for feed-

back control design purposes. Each of the constituent transfer functions corresponds

to one of the four elements in the mechanism first described by Rossiter (1964): the

amplification of disturbances by the free shear layer; the scattering of the disturbances

into pressure fluctuations at the downstream corner; the propagation of these pressure

fluctuations inside the cavity; and the receptivity to pressure perturbations at the up-

stream corner. A block diagram of the linear model is shown in figure 5.4. The ‘o’ and

‘L’ subscripts correspond to the upstream and downstream corners respectively.

The open-loop transfer function given by the linear model – which is between the

body force and the pressure at the upstream corner – is given by

P̂1(s) =
po(s)

ρvo(s)
=

G(s)S(s)A(s)
1−G(s)S(s)A(s)R(s)

. (5.2a)

If we are interested in a pressure measurement at the downstream corner (pL in figure
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5.4), then we instead have

P̂3(s) =
pL(s)

ρvo(s)
=

G(s)S(s)
1−G(s)S(s)A(s)R(s)

. (5.2b)

(We use the subscripts 1 & 3, together with a hat, to indicate that these are approxima-

tions of the transfer functions at probe locations 1 & 3.)

Since open-loop transfer functions have been measured from direct numerical sim-

ulations of the cavity, it is possible to compare these measured transfer functions with

those given by the linear model (5.2). (The measured transfer functions P1(s) and P3(s)

involve pressure measurements half-way along the upstream and downstream walls,

whilst the linear models (5.2a) and (5.2b) give the transfer functions at the upstream

and downstream corners, but this should make little difference, especially when the

linear model only considers the longitudinal behaviour of the cavity.)

Furthermore, since flow data are available at regular intervals throughout the com-

putational domain, it is possible to use the same system identification methods to find

approximations to the four constituent transfer functions, and these can be used to

inform the choice of the linear model’s constituent transfer functions in figure 5.4.

5.4.1 CONSTITUENT TRANSFER FUNCTIONS

We now look at each of the four constituent transfer functions in turn. The method for

approximating each transfer function from direct numerical simulations is explained,

R(s)

ρv
L

p0p
L

G(s)

shear layer

S(s)

scattering

A(s)

acoustics

receptivity

P̂1(s)

+

+ ρv0

FIGURE 5.4: Linear model of the cavity flow proposed by Rowley et al. (2006). The ‘o’
and ‘L’ subscripts used correspond to the upstream and downstream corners respectively.
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and the measured constituent transfer function is used to choose the parameters of the

linear model of Rowley et al. (2006). Finally, the overall open-loop system is treated:

the measured open-loop transfer functions (figures 5.3(a) & 5.3(c)) are compared with

those given by the feedback interconnection of the four constituent transfer functions

G(s), S(s), A(s) and R(s) given by equations (5.2a) & (5.2b).

Each constituent transfer function is measured in direct numerical simulations us-

ing the same spectral method that was used to find the overall open-loop transfer func-

tion P(s) in § 5.3. For the linear model, the parameters stated are all non-dimensionalized

by Strouhal number. For a time delay, for example, the non-dimensional value that is

stated, τ , is related to the dimensional value, τd by τ = τdU/L, where U is the free-

stream velocity.

Shear layer

The shear layer transfer function G(s) describes the amplification of velocity perturba-

tions at the upstream corner as they travel downstream. Therefore the input and output

are taken at the upstream corner and downstream corner respectively. Since the input

used for control is a body force ρv rather than a velocity (figure 5.2(b)), we include the

density in the input and output.

The shear layer transfer function can be found using linear stability theory. As a

simpler alternative for a linear model, Rowley et al. (2006) propose using a second-

order system with a time delay:

G(s) =
ρvL(s)
ρvo(s)

= kg
ω2

o
s2 +2ζ ωos+ω2

o
e−sτg. (5.3)

Figure 5.5 compares the measured shear layer transfer function to that given by

the linear model (5.3) for kg = 3.35, ωo = 3.44, ζ = 0.07 and τg = 1.43 (which corre-

sponds to κ = 0.70 in Rossiter’s formula (5.1)). The model transfer function captures

the important dynamical features of the shear layer: near-unity gain at low frequen-

cies; amplification of disturbances at mid-frequencies; attenuation of disturbances at

high frequencies; and an appropriate phase. (The phase is given by the time delay τg,

the time taken for a disturbance generated at the upstream corner to propagate to the
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FIGURE 5.5: Shear layer transfer function G(s): measured from direct numerical simula-
tion (——); and approximated as a second-order transfer function with time delay (−−−).

downstream corner.) One observes that the maximum gain, cross-over frequency and

phase characteristics are all well-captured by the model.1

Acoustics

The acoustic transfer function A(s) relates pressure perturbations at the downstream

corner, pL , to pressure perturbations at the upstream corner, po, and so the pressures at

these two locations are used as input and output for the measured transfer function.

The linear model accounts for longitudinal acoustic cavity resonances by modeling

acoustic propagation and reflection in the cavity:

+
kae−sτa

p0
p

L

+

re−sτa

A(s) =
po(s)
pL(s)

=
kae−sτa

1− kare−2sτa
. (5.4)

An acoustic wave generated at the downstream corner propagates upstream. Some

of it reflects off the upstream wall, propagates downstream, and arrives back at the

downstream wall, where it is again reflected. The coefficients ka and r measure the

total efficiency of the reflection process, including losses to the far-field. The time

1The cross-over frequency is the frequency at which the gain passes through 0 dB.
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FIGURE 5.6: Acoustic transfer function A(s): measured from direct numerical simulation
(——); and approximated as a time delay with reflection (−−−).

delay τa represents the time taken for an acoustic wave to propagate the length of the

cavity.

Figure 5.6 compares the measured acoustic transfer function with that given by the

linear model (5.4) for ka = 0.8, r = 0.16 and τa = 0.60. (This acoustic time delay is the

value expected and, in its non-dimensional form, is given simply by the Mach number

M.) One observes reasonable agreement, with the phase characteristics more well-

captured than the gain. It is likely that the discrepancy in the gain at lower frequencies

is caused by the acoustic field generated by the shear layer’s evolving vorticity. The

frequency at which the greatest discrepancy is seen coincides with the frequency at

which the shear layer’s gain is largest, which seems to support this observation.

We briefly note the behaviour of A(s) at high frequencies here. Above Strouhal

numbers of approximately 1.0, the gain of A(s) is poorly captured by the linear model,

and the phase of the measured A(s) has a positive gradient, which suggests a negative

time delay. We will see similar behaviour for the scattering and receptivity transfer

functions: that the agreement between what is measured and the linear model is poor

above Strouhal numbers of approximately 1.0. An explanation for all of these obser-

vations is given in § 5.4.3.
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FIGURE 5.7: Scattering transfer function S(s): as extracted from direct numerical simula-
tion (——); and approximated as a complex-valued constant (−−−).

Scattering

The scattering transfer function S(s) describes the generation of acoustic waves when

velocity perturbations impinge on the downstream corner. Therefore we use the quan-

tity ρvL and the pressure pL at the downstream corner as the input and output for the

measured transfer function.

The scattering transfer function is modeled as a constant gain and constant phase

lag:

S(s) =
pL(s)

ρvL(s)
= kse−i2πθs. (5.5)

Figure 5.7 compares the measured scattering transfer function with that given by the

linear model (5.5) for ks = 0.40 and θs = 0.22. Whilst the model is crude, its constant

gain and phase lag give reasonable agreement up to Strouhal numbers of about 1.0.

Receptivity

The receptivity transfer function R(s) describes the perturbations in ρv generated by

incident pressure perturbations at the upstream corner. Therefore we use the quantities

po and ρvo as the input and output for the measured transfer function.

The receptivity transfer function is modeled as a constant gain and constant phase
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FIGURE 5.8: Receptivity transfer function R(s): as extracted from direct numerical simu-
lation (——); and approximated as a complex-valued constant (−−−).

lag:

R(s) =
ρvo(s)
po(s)

= kre−i2πθr . (5.6)

Figure 5.8 compares the measured receptivity transfer function with that given by the

linear model (5.6) for kr = 0.50 and θr = −0.074. Again, whilst crude, the model’s

constant gain and phase lag give reasonable agreement up to Strouhal numbers of about

1.0.

5.4.2 OVERALL LINEAR MODEL

By using the linear model’s four constituent transfer functions in the feedback arrange-

ment shown in figure 5.4, a low-order model for the overall cavity flow can be formed.

Using (5.2), we can do this for a pressure measurement on the upstream wall, P̂1(s)

and on the downstream wall, P̂3(s).

We now compare the transfer functions given by the linear model at these two

measurement locations, P̂1(s) and P̂3(s), to those measured directly, P1(s) and P3(s).

The comparison for both transfer functions is shown in a Bode diagram in figure 5.9,

and in a Nyquist diagram in figure 5.10. It is clear from both figures that, over the

frequency range of the first two Rossiter modes, the agreement is very good for both

transfer functions. This is encouraging, since it is the dynamics over this frequency
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range, where the open-loop gain is the largest, that drives the design of a model-based

controller. The third Rossiter mode, however, is not well-captured by the linear model.

We now look at understanding these findings in terms of the loop gain.
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FIGURE 5.9: Bode diagram comparison of the open-loop transfer function: (a) for probe 1,
P1(s); and (b) for probe 3, P3(s). In both plots, the transfer function measured from direct
numerical simulation (——) is compared with that given by the linear model (−−−).
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FIGURE 5.10: Nyquist diagram comparison of the open-loop transfer function (positive
frequencies only): (a) for probe 1, P1(s); and (b) for probe 3, P3(s). In both plots, the
transfer function measured from direct numerical simulation (——) is compared with that
given by the linear model (−−−). The three Rossiter modes are also indicated.

Importance of the loop gain

The behaviour of the linear model can be explained in terms of its loop gain L(s),

where

L(s) = G(s)S(s)A(s)R(s).

This appears in the denominator of both transfer functions in (5.2), from which it is

clear that the linear model’s poles occur at those frequencies satisfying L(s) = 1. This

can only be satisfied when the phase of the loop gain satisfies ∠L(s) = 0◦, −360◦, . . . ,

and this condition gives the frequencies of the linear model’s modes. Then the stability

of a mode is determined by the magnitude of the loop gain at that frequency: if the

loop gain is less than one, the mode is stable, whilst if the loop gain is greater than one,

the mode is unstable.

Therefore the success in predicting the first and second Rossiter modes can be

explained – in terms of the linear model at least – by the correct prediction of the loop

gain L(s) at those frequencies.

Similarly, the loop gain can be used to explain the poor prediction of the third

Rossiter mode. The linear model predicts a third Rossiter mode at a Strouhal number
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of 1.15, which is higher than that seen in simulations. The loop gain at this Strouhal

number is very low, so that the third Rossiter mode is highly damped, and is therefore

hardly visible in the linear model’s transfer function. Since the loop gain decreases

with increasing frequency, the over-prediction of the third Rossiter mode’s frequency

has a negative impact on the prediction of the loop gain for the third Rossiter mode,

and so the prediction of both its frequency and its loop gain is poor.

Link to Rossiter’s formula

Setting G(s) = e−sτg , assuming S(s) = e−i2πγ and R(s) = 1, and letting ka = 1 and r = 0

(no reflection) in (5.4) to give A(s) = e−sτa , the predicted open-loop transfer function

for pressure probe 1 becomes

P̂1(s) =
e−i2πγe−s(τg+τa)

1− e−i2πγe−s(τg+τa)

which has poles at s = iωn, with

Stn =
fnL
U

=
n− γ

M +1/κ
, n = 1,2, . . . ,

and so we recover Rossiter’s formula (5.1).1

It is now clear why Rossiter’s formula can only predict the cavity’s resonant fre-

quencies and not their growth rates: the loop gain in this case is given by L(s) =

e−i2πγe−s(τg+τa), the magnitude of which is always one.

5.4.3 HIGH-FREQUENCY DYNAMICS

The linear model used shows reasonable success in predicting the gain and phase char-

acteristics of the open-loop cavity flow over the frequency range of the Rossiter tones.

Clearly this linear model is useful for feedback control design purposes. However, the

linear model over-predicts the time delay for pressure probe 1 at higher frequencies

(figure 5.9(a)), and we seek an explanation for this.

1In fact, the constant phase change given by γ can be arbitrarily apportioned between S(s) and R(s)
with no change in the predicted resonant frequencies.
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The linear model neglects the acoustic field generated by the body force ρvc di-

rectly. At low frequencies, this is perfectly valid: the acoustics generated by the

Rossiter mechanism dominate, and the effect of the body force’s direct acoustic field

is negligible. At higher frequencies, though, the shear layer attenuates disturbances

rather than amplifying them, i.e. |G(s)|< 1. This means that the velocity fluctuations

arriving at the downstream corner are very small, and the Rossiter mechanism is cut-

off. Indeed, these considerations lead to a convenient definition of ‘low frequencies’

and ‘high frequencies’: low frequencies are those for which the shear layer amplifies

disturbances, whilst high frequencies are those for which disturbances are attenuated.

(From figure 5.5, the cross-over frequency of the shear layer – where the magnitude of

G(s) passes through 0 dB – is at a Strouhal number of about 1.1.)

This explains the positive gradient of the acoustic transfer function’s phase seen

in figure 5.6. At frequencies above the shear layer’s cross-over frequency, the body

force dominates the acoustic field. Since the body force is much closer to the upstream

corner than to the downstream corner, the effect of the body force is seen at po before it

is seen at pL , and this corresponds to A(s) = po(s)/pL(s) having a negative time delay.

The acoustic transfer function makes clear what is true for all four constituent transfer

functions: it is only valid to seek them over the frequency range at which the Rossiter

modes can occur, i.e. at frequencies where |G(s)| > 1. To do so at higher frequencies

is to seek a mechanism that no longer exists, the open-loop dynamics being instead

dominated by the acoustics directly generated by the body force ρvc. This helps to

explain the poor agreement seen at higher frequencies between measurements and the

linear model for the transfer functions representing the acoustics A(s), scattering S(s)

and the receptivity process R(s).

We now look at a simple modification to the linear model to better capture this

high-frequency behaviour for probe 1. (For brevity’s sake we omit probe 3, although

the same analysis can be performed.) In particular, the modification correctly predicts

the system time delay at high frequencies. The modified linear model is shown in

figure 5.11. A transfer function to model the acoustics generated by the body force
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directly, B(s), is introduced. The transfer function that we choose is

B(s) = kbe−sτb, (5.7)

where kb is a gain and τb is the time taken for an acoustic wave, generated by the body

force, to propagate to the pressure sensor location of interest – in this case probe 1.

The linear model’s open-loop transfer function for pressure probe 1 is now given

by

P̂1(s) =
G(s)S(s)A(s)+B(s)

1−G(s)S(s)A(s)R(s)
.

At low frequencies, B(s) is negligible and we recover (5.2a). At high frequencies,

|G(s)| � 1 and we have simply P(s) = B(s).

The Bode diagram of the modified linear model’s transfer function, together with

that found in direct numerical simulations, is shown in figure 5.12. The parameter

values chosen are τb = 0.15, which is the anticipated acoustic time delay between

the body force and probe location 1, and kb = 0.33. One observes that the model’s

prediction of the Rossiter modes remains intact, and that the high-frequency dynamics

at probe 1 are more well-captured, in particular the time delay (given by the gradient of

the phase plot). Furthermore, this model is able to capture zeros of the transfer function

as well as the poles - this is explored in more detail in § 5.5.1.

R(s)

ρv
L

p0p
L

G(s)

shear layer

S(s)

scattering

A(s)

acoustics

receptivity

+

+ ρv0

B(s)

+

+

body force

FIGURE 5.11: Modified linear model to account for the acoustic field generated by the
body force directly.
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FIGURE 5.12: Bode diagram comparison of the modified open-loop transfer function
for probe 1: as extracted from direct numerical simulation (——); and approximated by
the modified linear model (−−−). The original linear model is also shown (− ·−) for
comparison.

5.5 PROPERTIES OF THE CAVITY TRANSFER FUNCTION

The results of § 5.4.1 suggest that, for suitable choice of constituent transfer functions,

a linear model of the form

P̂1(s) =
G(s)S(s)A(s)+B(s)
1−G(s)S(s)A(s)R(s)

(5.8)

is useful for feedback control purposes.

We now develop an explicit expression for this transfer function based on the con-

stituent transfer functions used in § 5.4.1. We focus on the transfer function for probe

location 1, P̂1(s), because this corresponds most closely to the pressure signal that we

will use for adaptive feedback control in chapter 6. The same results regarding the

locations of the zeros and the transfer function’s relative degree still hold for probe

location 3, however (which is the probe location that we will use for linear quadratic

control, also in chapter 6).

Since the scattering and receptivity transfer functions are modeled simply as com-

plex constants, we set S(s) = Λs and R(s) = Λr. We write the shear layer transfer

function (5.3) as the product of a rational transfer function Go(s) and a pure time de-
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lay:

G(s) = Go(s)e−sτg.

Substituting these expressions, together with the transfer functions for the acoustics

(5.4) and for the body force (5.7), into (5.8) gives

P̂1(s) =
kaΛsGo(s)e−s(τ−τb) + kb(1− kare−2sτa)
−kaΛsΛrGo(s)e−sτ +(1− kare−2sτa)

e−sτb (5.9)

= Po(s)e−sτb, (5.10)

where in (5.9) we have introduced τ = τg + τa. The body force’s acoustic delay τb has

been removed from the numerator of P̂1(s) in (5.9) and appears as a pure time delay.

(This can be done because the shear layer time delay τg will always be larger than the

body force’s acoustic delay τb.) Thus P̂1(s) is written as the product of some transfer

function Po(s) and a pure time delay in (5.10).

We now use this model to look at two important properties of the cavity flow’s

transfer function: the location of its zeros; and its relative degree. These two properties

will be important for the adaptive controller used in chapter 6.

5.5.1 TRANSFER FUNCTION ZEROS

We have already seen in chapters 2 & 3 that the location of the zeros of the open-loop

system are important for adaptive control. Specifically, any zeros must lie in the left

half-plane. We first note that without the body force B(s), the zeros of (5.2a) are given

by

G(s)S(s)A(s) = 0. (5.11)

Since none of the transfer functions G(s), S(s) or A(s) possess any zeros, (5.11) is

never satisfied, and the original linear model does not model any zero dynamics of the

system. With the body force modification made, the zeros of (5.8) are given by

G(s)S(s)A(s)+B(s) = 0,
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and zeros occur whenever G(s)S(s)A(s) =−B(s). Then from equation (5.9), the zeros

of P̂1(s) are given by the roots of

kaΛsGo(s)e−s(τ−τb) + kb(1− kare−2sτa) = 0. (5.12)

First consider the case where r→ 0, which physically corresponds to neglecting

the reflection of acoustic waves inside the cavity. Then (5.12) simplifies to

kaΛsGo(s)e−s(τ−τb) + kb = 0. (5.13)

We are interested in whether the (complex-valued) roots λ = σ + iω of (5.13) lie in

the left half-plane (σ < 0) or in the right half-plane (σ > 0). This amounts to looking

at the magnitude of (5.13), since |e−iω(τ−τb)|= 1:

|e−s(τ−τb)|= e−σ(τ−τb) =
|kb|

ka|Λs||Go(s)|
, (5.14)

and we see that, in this simplified case, the position of the zeros depends on the shear

layer’s gain, and is therefore frequency-dependent. We expect |kb/kaΛs| ≈ 1. There-

fore at low frequencies where |Go(s)| > 1, we expect e−σ(τ−τb) < 1 at the zeros, and

any zeros are likely to be in the right half-plane (σ > 0). At high frequencies where

|Go(s)| < 1, we expect e−σ(τ−τb) > 1, and any zeros are likely to be in the left half-

plane (σ < 0).

If we now include the effect of the downstream reflection coefficient r, the zeros of

(5.9) are given by

|e−s(τ−τb)|= |kb||1− kare−2sτa|
ka|Λs||Go(s)|

, (5.15)

and the same argument applies: right half-plane zeros are more likely at low frequen-

cies; and left half-plane zeros are more likely at high frequencies.1

These observations are supported by the transfer functions found at probe locations

1 & 3 in figures 5.3(a) & 5.3(c). Both transfer functions have zeros at a Strouhal number

1It is instructive to consider that when |Go(s)| > 1, equation (5.12) is dominated by the first term
kaΛsGo(s)e−s(τ−τb). Whilst this has no zeros, the pure time delay e−s(τ−τb) acts in a similar way to right
half-plane zeros (by making the term kaΛsGo(s)e−s(τ−τb) non-minimum phase).
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of around 1.1, at which point the shear layer has approximately unity gain. The phase

decrease across these zeros indicates that they are in the right half-plane. On the other

hand, probe 3 also has a pair of zeros at a Strouhal number of around St = 3.5, by

which point the shear layer transfer function satisfies |G(s)| � 1. The phase increase

across these zeros indicates that they are in the left half-plane.

From (5.15), the shear layer transfer function G(s) is important in determining the

zeros of P̂1(s). It is worth pointing out that the result concerning their locations holds

for any shear layer transfer function G(s) – provided that its gain is greater than one at

low frequencies and decreases at high frequencies – and is not exclusive to the second-

order model (5.3) chosen.

5.5.2 RELATIVE DEGREE

Recall that for a rational transfer function Po(s), written as the ratio of two coprime,

monic polynomials

Po(s) = ko
No(s)
Do(s)

,

its relative degree n∗ is defined as the degree of its denominator polynomial Do(s)

minus the degree of its numerator polynomial No(s):

n∗[Po(s)] = deg[Do(s)]−deg[No(s)]. (5.16)

We now see that the relative degree of P̂1(s) – when approximated by the product

of a rational transfer function Po(s) and a pure time delay – is zero, and we see it in

two ways. The first involves using the specific linear model of § 5.4, and the second is

based on some more general assumptions about the constituent transfer functions.

Based on the derived linear model

From (5.9), Po(s) for the cavity flow is not a rational transfer function. Therefore we

first form a rational approximation Pr
o(s). Following Evesque et al. (2003b), we do this

using Padé approximants. For some function f (s), an [L,M]th-order Padé approximant

of f (s) is a rational function whose numerator has order L and denominator has order
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M. The rational function matches the first (L+M+1) terms of the power series of f (s),

and therefore its range of validity increases as L and M increase. We use the notation

[L/M] f (s) for this Padé approximant. For a pure time delay, which has unity gain at

all frequencies, we choose L = M. Then the poles of the resulting Padé approximant

are complex conjugates of its zeros, and [M/M] f (s) has unity gain at all frequencies as

required. The phase of the approximation will be well-matched over some frequency

range, and this range increases with the order of the Padé approximant, but will deviate

asymptotically.

Replacing each of the delay terms in Po(s) with an [M,M]th-order Padé approxi-

mant [M/M] f (s), and writing Go(s) as Go(s)= kgω2
o/DG(s) (with DG(s)= s2+2ζ ωos+

ω2
o ) gives the rational approximation Pr

o(s):

Pr
o(s) =

kakgω2
o Λs[M/M]e−s(τ−τb) + kbDG(s)(1− kar[M/M]e−2sτa )

−kakgω2
o ΛsΛr[M/M]e−sτ +DG(s)(1− kar[M/M]e−2sτa )

. (5.17)

The relative degree of this expression is zero. This can be seen by observing that in the

limit ω → ∞,

lim
ω→∞

Pr
o(iω) =

kbDG(iω)(1− kar[M/M]e−2iωτa )
+DG(iω)(1− kar[M/M]e−2iωτa )

= kb,

and a finite gain at infinite frequency implies a relative degree of zero. Here we have

assumed that Go(s) = kgω2
o/(s2 +2ζ ωos+ω2

o ), but the result holds for any shear layer

transfer function with a relative degree of one or greater.

Based on some more general assumptions

The result above was derived for the specific model of the cavity flow given by the

constituent transfer functions (5.3–5.6), and by using Padé approximants. The ques-

tion now arises: is it possible to arrive at the same result using some more general

assumptions about the constituent transfer functions? We will now see that it is. Con-

sider again equation (5.8). Let G(s)S(s)R(s) = Ψ(s), giving

P̂1(s) =
Ψ(s)+B(s)

1−Ψ(s)R(s)
.
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Now represent each constituent transfer function as the ratio of two polynomials. Then

Ψ(s) = NΨ(s)/DΨ(s), for example, and P̂1(s) can be written as1

P̂1 =
NΨDRDB +NBDΨDR

DΨDRDB−NΨNRDB
(5.18)

=
DR

DB

(
NΨDB +NBDΨ

DΨDR−NΨNR

)
. (5.19)

We want to find the relative degree of this expression. By (5.16), this is

n∗(P̂1) =deg(DΨDR−NΨNR)+deg(DB)

−deg(DΨNB +NΨDB)−deg(DR).
(5.20)

We now make two assumptions on the relative degree of the constituent transfer func-

tions:

(i) the transfer functions Ψ(s) = G(s)S(s)A(s) and R(s) are strictly proper transfer

functions – that is, they have a relative degree of one or greater.

(ii) the body force transfer function B(s) has a relative degree of zero.

These two assumptions are physically motivated. The gain of a strictly proper transfer

function satisfies |P(iω)| → 0 as ω→ ∞. Because of viscosity, we expect the pressure

perturbations generated (indirectly) by velocity perturbations in the shear layer – which

is what the transfer function Ψ(s) = G(s)S(s)A(s) represents – to be small at high

frequencies. Similarly, we expect the response of the shear layer to incoming acoustic

waves to decrease with increasing frequency, and this response is characterized by the

transfer function R(s).

A transfer function with a relative degree of zero, on the other hand, has finite

response at high frequencies. Since viscosity is unimportant in sound waves (Dowling

& Ffowcs Williams, 1983), assumption (ii) is reasonable and, like assumption (i), is

1For clarity’s sake we now drop the (s) notation, and the frequency-dependence is implied.
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physically motivated.1 Using these two assumptions gives

deg(DΨDR−NΨNR) = deg(DΨDR), and

deg(DΨNB +NΨDB) = deg(DΨNB),

and equation (5.20) becomes

n∗(P̂1) = deg(DΨDR)+deg(DB)−deg(DΨNB)−deg(DR) (5.21)

= deg(DΨDRDB)−deg(DΨDRNB) (5.22)

= deg
(

DB

NB

)
= deg

(
1

B(s)

)
, (5.23)

which by assumption is zero.

5.6 SUITABILITY OF THE ADAPTIVE CONTROLLER FOR CAVITY OSCILLATIONS

We now consider applying the adaptive controller of chapter 3 to the cavity flow. We

first summarize the conditions placed on the open-loop plant by the adaptive controller

of chapter 3, and look at to what extent each is met by the model of the cavity that

was developed in § 5.5. The concept of collocated control is then introduced as a way

of dealing with the right-half plane zeros that can occur for the cavity flow, and it is

shown that using this collocated control arrangement, the cavity flow meets all of the

requirements of the adaptive controller.

The open-loop transfer function of interest includes the actuator, PL(s) = L(s)P(s).

The requirements placed on PL(s) by the adaptive controller, and the extent to which

PL(s) meets them, are summarized below.

(i) PL(s) has no right half-plane zeros. Based on the linear model derived in 5.5.1,

P(s) – and therefore PL(s) – may have zeros in the right half-plane, particularly

at low frequencies.

(ii) the sign of the high-frequency gain of PL(s) is known. At high frequencies P(s)

1Indeed, the form chosen for B(s) in (5.7) is ‘all-pass’ and has a relative degree of zero after a Padé
approximant is used for the time delay.
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becomes simply P(s) = B(s) = kbe−sτb , and so the high-frequency gain of PL(s)

is klkb, where kl is the high-frequency gain of the actuator transfer function.

(This assumes that the body force completely characterizes the high-frequency

behaviour of the system, which it may not, and so in general we must assume

that the high-frequency gain must be determined.)

(iii) the relative degree of PL(s) does not exceed two. In § 5.5.2 it was shown that the

relative degree of P(s) is zero. Therefore the relative degree of PL(s) is given

by the relative degree of the actuator transfer function L(s). We expect a typical

actuator to have a relative degree of one or two – see Kegerise et al. (2007a),

for example, where the actuator used is typical of a second-order, under-damped

system. Therefore we assume that the relative degree of PL(s) satisfies n∗ ≤ 2.

Clearly, all of the requirements on PL(s) are met, with the exception of the locations

of its zeros. There is also another, slightly more subtle way in which the cavity flow

does not presently meet the above requirements. For a transfer function to be Strictly

Positive Real, a relative degree of one is necessary but not sufficient. In addition the

pole and zero pairs must ‘interlace’ in frequency: that is, a pair of poles must be

followed by a pair of zeros, who must be followed by another pair of poles, and so on.

Referring to figure 5.3, this condition is not met at any of the three pressure probes,

where in each case the three Rossiter tones neighbour each other with no zeros in

between.

We remedy both of these problems by introducing collocated control. This arrange-

ment is depicted in figure 5.13, where now the pressure sensor and body force region

are collocated. The location of the body force does not change, the pressure sensor

used for control instead moving to join it near the cavity’s upstream corner. Although

this arrangement is not possible in practice, it could be approximated in experiments

by placing a pressure sensor close to the actuator at the upstream corner. It seems rea-

sonable to assume that such an experimental arrangement, although no longer strictly

collocated, could give rise to the same desired properties of only left half-plane zeros

and interlacing poles and zeros.

We introduce this collocation to take advantage of the fact that, for a collocated

transfer function from volume velocity to pressure, the product of the input and out-
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FIGURE 5.13: Collocated control arrangement for adaptive control. (Pressure probe 3 is
also shown.)

put has the dimension of power, and is therefore positive real (see Hong & Bernstein

(1998)). Only stable transfer functions can be positive real, and so this positive real-

ness applies to the closed-loop stabilized system (as it did in the development of the

adaptive controller in § 3.3.1).

For a transfer function to be positive real, all of its zeros must lie in the left half-

plane, and its poles and zeros must interlace in frequency (this ensures that its phase

lies between −90◦ and +90◦). Therefore using collocated control, the closed-loop

stabilized system must have only left half-plane zeros, and the pole and zero pairs

must interlace in frequency. These collocation-based arguments do not include the

actuator transfer function L(s), but we have already established in requirement (iii) on

page 86 that the overall system PL(s) can be modeled as having a relative degree not

exceeding two, and now all of the requirements on PL(s) are satisfied.

5.7 CONCLUDING REMARKS

This chapter has focused on linear models of cavity oscillations that are useful for

feedback control purposes. By applying system identification techniques to direct nu-

merical simulations of the cavity flow, its linear dynamics have been very accurately

determined. The transfer function found has been compared to that given by a sim-

ple linear model, which shows reasonable agreement and which is useful for feedback

control design.

By including a simple model of the acoustic field generated directly by the body

force region, two properties of the system are more accurately modeled: its behaviour
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at high-frequencies (in particular its time delay); and the locations of its zeros.1

Some general properties of cavity oscillations have been derived. These properties

are of general interest for any feedback control scheme, but are particularly useful for

adaptive control. Although the derivation of these properties relies to some extent on

the specific linear model used, many of the underlying assumptions would hold for any

physically-motivated model – for example, that the shear layer amplifies disturbances

only over some limited frequency range, and that the actuator is of low relative degree.

Finally, by comparing these derived properties to the properties required by the adap-

tive controller of chapter 3, it has been shown that such an adaptive controller can be

applied to the cavity flow, provided that collocated control is used.
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CHAPTER 6

FEEDBACK CONTROL OF CAVITY OSCILLATIONS

Previous attempts at controlling cavity oscillations have met with limited success. One

of the major challenges for the control of cavity flows is dealing with the sensitivity

of the flow’s dynamics to changes in Mach number. See, for example, Rowley &

Juttijudata (2005), where an 8 % change in Mach number from M = 0.60 to M = 0.55

resulted in the closed-loop controller actually increasing the amplitude of oscillations,

or Kegerise et al. (2007b), where closed-loop control maintained suppression of cavity

tones only over a modest range of Mach numbers (0.275≤M ≤ 0.29).

Feedback control is most effective when a reliable model of the system-to-be-

controlled is available. In this chapter, system identification and model reduction tech-

niques are used to form a low order model of the cavity flow. Specifically, the Eigen-

system Realization Algorithm (ERA) is used to find a low order state-space model of

the cavity flow. An optimal (H2) controller is then designed, and this controller main-

tains stability over a wider Mach number range than seen in previous studies. We then

attempt to improve the robustness of the controller by introducing a very simple type

of gain scheduling.

Finally, we look at using a Lyapunov-based adaptive control scheme like that used

in § 3, and see that it maintains stability over an even wider Mach number range.

6.1 REDUCED ORDER MODELING FOR FLUIDS

One of the greatest challenges for feedback control of fluids is their dynamical com-

plexity, the Navier-Stokes equations being both high-dimensional and non-linear. Model

89
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reduction involves finding low-dimensional models that approximate the high-dimensional

dynamics of a system. Since model reduction is so pertinent to the problem of feed-

back control of fluids, a brief review of some of the methods available is given here,

before we use one of these methods – the Eigensystem Realization Algorithm (ERA) –

to form a reduced-order model of the cavity flow which is useful for feedback control

purposes.

Proper Orthogonal Decomposition (POD), also known as principal component anal-

ysis, or the Karhunen-Loève expansion, has been used for some time in developing

low-order models of fluids (Lumley, 1970; Sirovich, 1987). Given a set of data that lie

in a vector space V, proper orthogonal decomposition finds a subspace Vr of dimension

r such that the error in the projection onto the subspace is minimized. The resulting

POD modes are optimal in that they maximize the average energy in the projection of

the data onto the subspace spanned by the modes. However, these POD modes may

not be the best modes for describing the dynamics that generate the data set, since low-

energy features may be critically important to the dynamics. For cavity oscillations,

for example, acoustic disturbances are crucial to the Rossiter mechanism, even though

they have much smaller energy than hydrodynamic pressure fluctuations.

To address this problem, Rowley (2005) introduced a method called balanced POD

which approximates balanced truncation (Moore, 1981) for large systems, and which

has deep connections with POD. The balancing refers to the observability and con-

trollability Gramians of the resulting low order model being equal and diagonal (or

‘balanced’), and physically this means that the dynamics that generate the data set are

properly accounted for. The concepts of observability and controllability of a low order

model will be explained in more detail in the next section.

Because of this balancing procedure, a reduced order model computed by balanced

POD is vastly superior to that given by POD for a given order r, at least when we are

concerned with finding a low order model for feedback control purposes. The main

disadvantage with balanced POD, however, is that solutions of an adjoint system are

required, and so the method can only be used in computational studies and not for

experimental data.

Ma et al. (2009) have shown that the reduced order models generated by the eigen-
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system realization algorithm (Juang & Pappa, 1985) – a method developed for modal

parameter identification and model reduction in the structural dynamics community –

are theoretically identical to those generated by balanced POD. A distinct advantage

of the ERA is that solutions of an adjoint system are not required, and so a balanced

low order model can be found from experimental data as well as from simulations.

6.2 BALANCED REDUCED ORDER MODELING

We now look at some of the important concepts for balanced reduced order modeling,

before looking specifically at the eigensystem realization algorithm.

Consider the linear, time-invariant, discrete-time dynamical system

x(k +1) = Ax(k)+Bu(k)

y(k) = Cx(k)
(6.1)

where u ∈ Rp is a vector of inputs, y ∈ Rq is a vector of outputs and x ∈ Rn is called

the system state: n is the order of the system, and will be important later. k is the time

step index. We consider the discrete-time case, since we are interested in discrete-time

data from simulations or experiments.

We now look at the definitions of two important concepts for balanced reduced

order models: controllability and observability.

6.2.1 CONTROLLABILITY

For zero initial condition x(0) = 0, the state of the system (6.1) evolves according to

x(1) = Bu(0)

x(2) = ABu(0)+Bu(1)

x(3) = A2Bu(0)+ABu(1)+Bu(2)
...

x(s) =
s

∑
k=1

Ak−1Bu(s− k)
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or, in matrix form

x(s) =
[
B AB A2B · · · As−1B

]




u(s−1)

u(s−2)

u(s−3)
...

u(0)




, (6.2)

which relates the state at time step s, x(s) to previous inputs u(k), 0 ≤ k ≤ s− 1. A

system is called controllable if, for every state x̄, there exists an input series u(k) that

takes the state from x(0) = 0 to x(s) = x̄ in a finite time. It can be shown that the system

(6.1) is controllable if and only if the controllability matrix

Q ,
[
B AB A2B · · · As−1B

]
, (6.3)

Q ∈ Rn×ps, which appears in (6.2), has rank n. Of course, if the (linear) system can go

from zero state to any x̄, then it can go from any x(0) to any x̄.

6.2.2 OBSERVABILITY

A state-space realization (6.1) is observable if the initial state x(0) can be deduced

from knowledge of u(k) and y(k) for 0≤ k ≤ s for any s > 0.

Without loss of generality, we may take u(k) = 0, ∀k, since the u-dependent part

of the solution can always be subtracted from the full solution. Therefore looking at

the evolution of the output y(k), for some initial state x(0) 6= 0, the system (6.1) with

u(k) = 0 gives

y(0) = Cx(0)

y(1) = CAx(0)

y(2) = CA2x(0)
...

y(s−1) = CAs−1x(0)
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or, in matrix form 


y(0)

y(1)

y(2)
...

y(s−1)




=




C

CA

CA2

...

CAs−1




x(0)

which relates the output at all times to the initial state x(0). A unique solution exists

– and therefore the initial state x(0) can be deduced – if and only if the observability

matrix

P =
[
C CA CA2 · · · CAs−1

]T
, (6.4)

P ∈Rqs×n, has rank n. Having justified our setting u(k) = 0 without loss of generality,

this result holds for any u(k) 6= 0.

6.2.3 EIGENSYSTEM REALIZATION ALGORITHM

In the previous section it was stated that the eigensystem realization algorithm can be

used to find balanced reduced order models. We now look at using the ERA to find

a low order state-space model of the cavity flow. The ERA is valid only for stable

systems, and therefore we use the dynamic phasor – as we did in § 5 – to first stabilize

the flow. Then we use an extension to the ERA called observer/controller identification

(OCID), which allows the open-loop dynamics of a system operating in closed-loop to

be found.

An overview of the ERA is now given, and the ERA for stable systems is described.

Then we look briefly at the problems faced in applying it to an unstable system, and

see how these problems can be addressed using OCID.

The eigensystem realization algorithm involves forming the generalized αq×β p
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Hankel matrix composed of the system Markov parameters:

H(k−1) =




Yk Yk+1 · · · Yk+β−1

Yk+1 Yk+2 · · · Yk+β

...
... . . . ...

Yk+α−1 Yk+α · · · Yk+α+β−2




(6.5)

where α and β are arbitrary integers. The Markov parameter Yk ∈Rq×p for time index

k is defined as

Yk , CAk−1B. (6.6)

Setting k = 1 for the Hankel matrix, substituting in (6.6) for the Markov parameters,

and decomposing into two matrices, we find that

H(0) = PαQβ (6.7)

where Pα ∈ Rαq×n is the observability matrix (6.4) and Qβ ∈ Rn×β p is the controlla-

bility matrix (6.3) as defined earlier. Since the Hankel matrix H(0) is composed of the

Markov parameters in (6.5), we see from (6.7) that the Markov parameters are closely

related to the observability and controllability matrices.

Now, factorizing the Hankel matrix H(0), which has rank n, using the singular

value decomposition, and truncating to order r < n, we have

H(0) = RΣST ∼= RrΣrST
r . (6.8)

Rr and Sr are made up of the first r (orthonormal) columns of R and S respectively. Σr

is a rectangular matrix, Σr = diag = [σ1 σ2 · · · σr], with σ1 ≥ σ2 ≥ ·· · ≥ σr ≥ 0,

the first r singular values of H(0). Examining (6.7) and (6.8) as a whole, we can write

H(0) = PαQβ
∼= (RrΣ

1/2
r )(Σ1/2

r ST
r ). (6.9)

One possible choice for the decomposition of H(0) is then Pα = RrΣ
1/2
r and Qβ =
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Σ
1/2
r ST

r , and this choice makes both Pα and Qβ balanced in the sense that

PT
αPα = Σ

1/2
r RT

r RrΣ
1/2
r = Σr

Qβ QT
β

= Σ
1/2
r ST

r SrΣ
1/2
r = Σr,

(6.10)

where PT
αPα and Qβ QT

β
are the observability and controllability Gramians.

The system matrices B and C can then be found from (6.3) and (6.4) respectively.

To find the A matrix, let k = 2 in (6.5) and use (6.9) to give

H(1) = PαAQβ
∼= (RrΣ

1/2
r )A(Σ1/2

r ST
r ),

from which A can be found. For a more rigorous treatment of the ERA, see Juang &

Pappa (1985) or Juang (1994).

The state-space model (6.1) given by the ERA is balanced: the controllability and

observability Gramians are diagonal and equal by (6.10), and this means that the dy-

namics of the system are properly taken into account. Furthermore, an upper bound

for the error in the reduced order model can be derived. Let Gr denote the transfer

function of the reduced order model of order r, and let G denote the transfer function

of the full system. Then the H∞-norm of the error satisfies

||G−Gr||∞ ≤ 2
n

∑
j=r+1

σ j

(‘twice the sum of the tails’).

Finally, we briefly note a connection to POD here: the modes found by POD are the

most controllable modes, and the observability of the modes is not taken into consid-

eration. This helps to explain some of the inadequacies of POD for feedback control,

since the most controllable modes may be only weakly observable.
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Observer/controller identification (OCID)

The ERA is only applicable to stable systems. We can see the problem with applying

the ERA to an unstable system by again considering equation (6.6):1

Yk , CAk−1B.

For a stable system subjected to an impulse, the term Ak−1 becomes progressively

smaller, and the Markov parameter (or ‘impulse response’) Yk ' 0 for sufficiently large

k. For an unstable system, however, Ak−1 becomes progressively larger, and no such

approximation can be made.2

For an unstable system made stable by feedback, OCID remedies this problem

by first computing the Markov parameters of the closed-loop, stable system. Using

these Markov parameters, and the fact that both the forcing signal and the feedback

signal can be measured (ρvw and ρv f in figure 5.2(b)), OCID then finds the Markov

parameters of the open-loop, unstable system and of the controller. These Markov

parameters can be used to find a state-space realization of the open-loop system (and,

if desired the closed-loop controller).

For more details of OCID, see Juang (1994), chap. 8.

6.3 APPLICATION OF THE ERA TO THE CAVITY FLOW

We now look at applying the ERA to the cavity flow. To validate the reduced order

models obtained, we compare the frequency response of the reduced order model to

that found using spectral analysis in § 5.3

We find that by using a model with 140 states, the frequency responses of the

reduced order model and the spectral estimate are almost indistinguishable: the com-

parison is shown in figure 6.1. We seek a low order model of the cavity flow, and so

the question now arises: How many states are required for feedback control purposes?

1This is without considering the non-linearities that the growing response will give rise to.
2A similar problem can occur for lightly damped systems, where the k required to satisfy Yk ' 0 can

become prohibitively large.
3The reduced order model is in state-space form (6.1) and is therefore in the (discrete) time domain.

Its frequency response can be found by using z-transforms.
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FIGURE 6.1: Open-loop Bode diagram comparison: transfer function found using spectral
analysis (—–), and using the ERA with 140 states (−−) and with 8 states (–·–). All for
probe 3.

By using just 8 states in the ERA-derived reduced order model, one observes (figure

6.1) that the first three Rossiter modes are very well-captured. (Mathematically, this

means that the H∞-norm of the error ||G−Gr||∞ is sufficiently small using 8 states.)

This 8-state reduced order model is used in the next section for the design of a

linear quadratic Gaussian regulator.

6.4 LQG CONTROL

The measured open-loop transfer function, as well as giving valuable insight into some

of the physical features of the cavity flow, can be used for feedback control design

purposes. Using the state-space model found using the ERA, it is possible to use

standard robust control techniques such as Linear Quadratic Gaussian (LQG) control

and H∞ control (Zhou & Doyle, 1998). Here we focus on LQG control, and use it to

find a stabilizing regulator for the cavity flow at a Mach number of 0.6.
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− P (s)

L(s)
V

ρvc pc

K(s)

d

n

FIGURE 6.2: Closed-loop cavity arrangement. The effect of noise (n) and disturbances
(d) has been included. The subscript c is used to denote the control parameters ρvc and
pc, which could be situated anywhere in the cavity’s domain, and V is the control voltage.

6.4.1 CONTROLLER DESIGN

The cavity flow’s transfer function P(s) found in § 5 and § 6.3 is from the control body

force ρvc to the pressure measurement pc. In an experiment, an actuator would be

used to provide the body force, and so we include an actuator transfer function here,

which we denote L(s). Then the regulator is designed for the overall plant PL(s) =

L(s)P(s), which is the transfer function between a control voltage V and the pressure

measurement pc. The overall arrangement is shown in figure 6.2.

For the discrete-time state space model defined by (6.1), a Linear Quadratic (LQ)

regulator uses the state feedback law

u =−Kx (6.11)

to minimize the quadratic cost function

J =
∞

∑
i=0

(xT Qxx+uT Quu). (6.12)

Qx ∈Rn×n and Qu ∈Rp×p are weighting matrices used to penalize large system states

and large control inputs respectively.1

1Note the difference between the scalar transfer function K(s) in figure 6.2 and the matrix of (con-
stant) control gains K in the state feedback law (6.11).
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Substituting (6.11) into (6.1), we obtain the closed-loop system

x(k +1) = (A−BK)x(k)

y(k) = Cx(k)
(6.13)

and we see that, by suitable choice of the feedback gain matrix K, the eigenvalues of

(A−BK) – and therefore the dynamics of the closed-loop system – can be made stable.

Linear Quadratic (LQ) control assumes that the full state x is available to the regu-

lator – this state is used in the feedback law (6.11). In many cases, though, the full state

is not available for measurement, the regulator having direct access only to the inputs

u and the outputs y. Linear Quadratic Gaussian (LQG) control can be employed to

remedy this by using an observer to form an estimate x̂ of the real state x. This estimate

of the state is used in the LQG control feedback law

u =−Kx̂. (6.14)

It remains to see how the estimate of the state is formed: the observer determines

the estimate of the state by

x̂(k +1) = Ax̂(k)+Bu(k)+L[y(k)− ŷ(k)]

ŷ(k) = Cx̂(k),
(6.15)

a system that mimics (6.1), but is forced by the output error y− ŷ. It is straightforward

to show that, if the eigenvalues of (A−LC) are stable, the estimation error x̂− x tends

to zero. The Gaussian term in Linear Quadratic Gaussian control refers to the specific

type of observer used, a Kalman filter. A Kalman filter amounts to a specific choice

of the observer gain matrix L which is optimal, in the sense that the error converges in

the presence of stochastic disturbances d and noise n (see figure 6.2), assumed to be

zero-mean, Gaussian, white-noise processes.

The LQG and optimal estimation problems can be solved using standard routines

in Matlab. The resulting LQG controller and observer can then be combined to give

an overall regulator K(s), which is of the same order as the plant model used PL(s)

(including actuator).
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The actuator transfer function used L(s) is a second-order, under-damped system:

L(s) = kL

ω2
L

s2 +2ζLωLs+ω2
L

,

with kL = 1.0, ωL = 1.9 (which corresponds to a non-dimensional frequency of fL =

0.3) and ζL = 0.3. See Kegerise et al. (2007a) for example, where the frequency

response of the piezoelectric actuator used was typical of this type.

Since we have a single input system, Qu in (6.12) is simply a scalar. We choose the

output measurement y = Cx as our output cost (giving Qx = CTC), and the quadratic

cost function has a simple form

J =
∞

∑
i=0

(y2 +quu2),

where the scalar qu is used to specify the relative importance of maintaining a small

input signal and maintaining a small output measurement. Very little noise is encoun-

tered in the direct numerical simulations, but we expect more in a real experiment, so

Gaussian white noise is artificially added to the pressure measurement. The covariance

of this noise is used in the design of the observer.

The Bode diagram of the overall regulator K(s), given by the combination of the

state estimator (6.15) and the feedback law (6.14), is shown in figure 6.3. The Nyquist

diagram of the overall open-loop plant PL(s) is plotted in figure 6.4(a): this shows the

(complex-valued) frequency response of the system in the complex plain for both pos-

itive and negative frequencies. In figure 6.4(b), the Nyquist diagram of the loop-gain

K(s)PL(s) is plotted. Since the open-loop system has two pairs of unstable poles, we

require 4 counter-clockwise encirclements of the -1 point. The regulator K(s) provides

those 4 encirclements, and it does so with a gain margin of 4.5 dB and a phase margin

of 36◦.

6.4.2 RESULTS

We now look at how the LQG regulator performs in direct numerical simulations of

the cavity flow. The LQG regulator is first applied at the design point: a free stream
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FIGURE 6.3: Bode diagram of the LQG regulator (—–); and of the gain-scheduled regu-
lator for a Mach number of M = 0.8 (−−).

Mach number of M = 0.6. Since we are confident that the state-space model of the

system is accurate, and since the optimal control techniques used should provide rea-

sonable robustness to changes in the plant, the regulator should exhibit good robustness

to changes in Mach number. We test this by applying the controller at off-design con-

ditions, for Mach numbers in the range 0.4≤M ≤ 0.8.

Closed-loop control results for the design case of M = 0.6 are shown in figure 6.5:

control is activated at approximately 76 non-dimensional time units. The introduction

of the LQG regulator stabilizes the flow, and the pressure measurement is reduced to

the background noise level.

Figure 6.6 summarizes the results of the LQG regulator applied at off-design Mach

numbers. Results for Mach numbers of 0.4, 0.5, 0.7 and 0.8 are shown – this range

of Mach numbers is based on the range over which the Rossiter mechanism (or ‘shear

layer mode’) is observed (Rowley et al., 2002). The LQG regulator performs well at

the lower Mach numbers, providing closed-loop stability for M = 0.4 and M = 0.5. At

the higher Mach numbers, though, it performs less well: for M = 0.7 and for M = 0.8,

the limit cycle, although reduced in amplitude by the regulator, persists. This poorer

performance at higher Mach numbers is a result of the cavity’s modified dynamics, and
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FIGURE 6.4: Nyquist diagrams for LQG control: (a) the open-loop plant PL(s); and (b)
the loop-gain K(s)PL(s). Positive and negative frequencies are shown, and in each plot the
three Rossiter modes are indicated.

is not a result of the 8 state reduced order model used: the same limitations would be

encountered by the controller if a higher order model of the cavity were used.

These same observations can be made by looking at the time delay phase portraits

of the pressure signals, which can help to distinguish between a stable, noise-driven

regime and a limit-cycling regime. The phase portrait of a limit-cycling system will

be a closed curve (and, with noise, a fuzzy curve). The phase portrait of a stable

system, forced by noise, will be concentrated about a point. Figure 6.7 shows the time

delay phase portraits for each of the four off-design Mach numbers: both open-loop

and closed-loop data are shown. Each of the plots helps clarify the observations made

based on figure 6.6. For Mach numbers of 0.4 and 0.5, control transforms the pressure

phase portrait from a closed-curve to being concentrated about a point, suggesting

closed-loop stability. For Mach numbers of 0.7 and 0.8, the closed-curve nature of the

phase portrait remains intact with feedback control activated.
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case (−−).
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FIGURE 6.7: Time delay phase portraits of the LQG regulator for free stream Mach num-
bers of (a) M = 0.4; (b) M = 0.5; (c) M = 0.7; and (d) M = 0.8. Pressure measurements
are compared for the closed-loop (•) and the open-loop case (•).

6.4.3 GAIN SCHEDULING

In this section we ask a simple question: can Rossiter’s formula, used for predicting

the frequencies of cavity oscillations, be used to increase the robustness of a feedback

controller?

Rossiter’s formula (Rossiter, 1964) has proved to be a reliable way of predicting the

frequencies of cavity oscillations. Whilst modifications have since been made (Heller

et al., 1971), these modifications retain the same underlying mechanism: a disturbance

in the free shear layer spanning the cavity is amplified via Kelvin-Helmholtz instabil-

ity; acoustic scattering of the disturbance at the cavity trailing edge gives rise to further

disturbances to the shear layer; for suitable phase change of the disturbance, resonance
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occurs. Rossiter’s formula predicts resonant modes at Strouhal numbers given by

Stn =
n− γ

M +1/κ
, n = 1,2, . . .

where γ is a constant phase delay, and κ is given by the phase speed of disturbances in

the shear layer.

Gain-scheduling is a technique commonly employed in feedback control systems to

increase robustness to changing operating conditions. The method involves scheduling

the parameters of the feedback controller based on some global system property that

can be measured. In our case, this amounts to modifying the LQG regulator in response

to the free stream Mach number.

The exact form of the scheduling that we consider is very crude: simply ‘stretch-

ing’ or ‘shrinking’ the regulator’s frequency response along the frequency axis: the

stretching factor used is given by Rossiter’s formula. Using Rossiter’s formula, it is

easy to show that, for a given resonant mode number n, the relationship between the

Strouhal number of that resonant mode at two different Mach numbers M1 and M2 is

given by
Stn,M2

Stn,M1

=
M1 +1/κ

M2 +1/κ
, (6.16)

which gives us the stretching factor to use in the gain scheduling: this expression holds

for any n. The result of (6.16) for a Mach number of M = 0.8, which gives a stretching

factor of 0.922, is shown in figure 6.3. The regulator’s frequency response is squeezed

along the frequency axis to anticipate the reduction in Strouhal number that this new

Mach number brings.

We now look at applying this gain-scheduling to the regulator at those Mach num-

bers where closed-loop stability was not achieved (M = 0.7, M = 0.8 – see figure 6.6).

The results are shown in figure 6.8. For clarity, the open-loop pressure data are omitted,

and only the original regulator and gain-scheduled regulator data are compared. The

same scale as that in figure 6.6 is used for the pressure data, however, so comparison

with the open-loop data can easily be made.

We see that the gain-scheduled regulator actually performs more poorly at both

Mach numbers, with the amplitude of oscillations increased relative to the original
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FIGURE 6.8: Performance of the gain-scheduled LQG regulator at off-design Mach num-
bers: for a free stream Mach number of (a) M = 0.7; and (b) M = 0.8. For both the
pressure plots and the body force plots, the original regulator (—–) is compared to the
gain-scheduled regulator (−−).
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regulator, despite a larger control body force being provided.

It appears that such a crude form of gain-scheduling is, in fact, too crude. This

is perhaps not surprising, since its foundations in Rossiter’s formula means that it ac-

counts solely for changes in frequency, and makes no allowance for the changes in

growth rates of the modes which will inevitably occur.

These observations provide clear motivation for an adaptive feedback controller,

which we look at next.

6.5 ADAPTIVE CONTROL

We now look at applying the adaptive controller – developed for combustion oscil-

lations in chapter 3 – to the cavity flow for free stream Mach numbers in the range

0.40 ≤M ≤ 0.80. Based on the observations made in § 5.6, we use a collocated con-

trol arrangement, so-called because the actuator and pressure sensor are now collo-

cated (see figure 5.13), using which the adaptive controller provides stability at all

Mach numbers tested.

With the requirements on PL(s) all met using collocated control as shown in § 5.6,

we apply the adaptive controller for n∗ ≤ 2 of § 3.3.1 (equation (3.9)):

k̇(t) = Γsgn(go)p(t)dλ (t)

V (t) =−kT (t)d(t)− k̇T (t)dλ (t),

(with, as before, k = [k1 k2]T , d = [p Vz]T , Vz = V
s+zc

and dλ = 1
s+λ

d) to the cavity flow

with collocated input and output. The parameter values used for the adaptive controller

are zc = 0.3, γ1 = 3.0×105, γ2 = 3.0×101, and sgn(g0) = +1.

Results of applying the updating rule and control law given by (3.9) to the cavity

flow for Mach numbers of 0.40, 0.50, 0.60, 0.70 and 0.80 are shown in figures 6.9–

6.13.

To make the adaptive controller’s behaviour clear, noise has not been artificially

added, although this could be accounted for in the updating rule with a dead-zone like

that used in chapter 4 (equation (4.8)). For each Mach number, two pressure signals

are plotted: the (collocated) pressure used for feedback control pc (see figure 5.13),
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and the pressure at probe 3, p3, which is included to make comparison with the LQG

control results easier, since p3 was the pressure signal used in that case.

The time scales used are the same as those used in figures 6.5 & 6.6 for LQG con-

trol, except for M = 0.70 and M = 0.80: for these two cases, the adaptation takes

longer and therefore the pressure fluctuations take longer to eliminate. Nevertheless,

the adaptive controller provides stability at all five Mach numbers. The fixed controller

that each of these controllers corresponds to once adaptation has stopped are given in

table 6.1.

Although the collocated control arrangement makes the adaptive controller less

practical than the LQG regulator, the advantage of adaptive control is clear, with sta-

bility provided over the entire Mach number range.

TABLE 6.1: Corresponding fixed controller K(s) at each of the five Mach numbers.

M = 0.4 M = 0.5 M = 0.6 M = 0.7 M = 0.8

25.8
s+0.30
s+0.36

39.7
s+0.30
s+0.47

47.4
s+0.30
s+0.59

34.7
s+0.30
s+0.47

49.7
s+0.30
s+0.68

6.6 CONCLUDING REMARKS

This chapter has built on the linear modeling approach used in chapter 5, and has done

so in two ways. First, model reduction using the eigensystem realization algorithm

has been used to form a low-order state space model of the cavity flow. Validation

of the reduced-order model has been performed in the frequency domain, where its

frequency response was compared to that found in chapter 5 using spectral methods.

This reduced-order model has been used to design a robust (H2) feedback controller,

which provides stability over a wider Mach number range than seen in previous studies.

Second, by taking advantage of the properties of the cavity flow derived in § 5.5,

together with the collocation-based arguments of § 5.6, the adaptive controller of chap-

ter 3 has been applied to the cavity flow. The adaptive controller provides stability over

the entire Mach number range, albeit at the cost of a less practical control arrangement.
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surement at probe 3 and the feedback control pressure measurement pc for both the open-
loop (−−) and closed-loop (—–) case; the middle plot shows the control body force; and
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FIGURE 6.10: Adaptive control for M = 0.50. Legend same as in figure 6.9.
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FIGURE 6.11: Adaptive control for M = 0.60. Legend same as in figure 6.9.
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FIGURE 6.12: Adaptive control for M = 0.70. Legend same as in figure 6.9.
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FIGURE 6.13: Adaptive control for M = 0.80. Legend same as in figure 6.9.



CHAPTER 7

CONCLUSIONS

This chapter contains a summary of the contributions of this thesis, together with some

suggestions for future work.

7.1 SUMMARY

The elimination of combustion oscillations using adaptive feedback control has been

considered. An adaptive feedback controller for annular combustor geometries has

been developed and tested in a low-order thermoacoustic network model called LOTAN.

The adaptive controller uses a modal decomposition of the pressure field from a num-

ber of azimuthally-spaced pressure transducers for sensing and a number of azimuthally-

spaced fuel valves for actuation. The controller stabilizes circumferential modes and

longitudinal modes, including the simultaneous control of multiple modes when those

modes are uncoupled. Control is maintained following a large change in operating

conditions. Finally, the controller still achieves control of a circumferential instability

using a reduced number of pressure transducers and fuel valves, which represents a

more practicable control arrangement.

One of the requirements of Lyapunov-based adaptive control has then been consid-

ered in more detail: that the sign of the high-frequency gain of the open-loop system

is known. By using a Nussbaum gain, an adaptive controller that does not require

this information has been developed and tested experimentally on a Rijke tube. The

Nussbaum gain adaptive controller stabilizes the system, and maintains control fol-

lowing a 13 % change in length of the Rijke tube (which leads to a 10 % change in the

115
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instability’s frequency).

Feedback control of a different type of fluid-acoustic resonance has also been con-

sidered: the compressible flow past a shallow cavity. First, system identification tech-

niques were used to very accurately determine the cavity’s linear dynamics or ‘transfer

function’. This dynamical model of the cavity – found directly from direct numerical

simulations – was then compared to that given by a simple linear model, which models

individual components of the cavity physics separately, and which is intended to be

useful for feedback control purposes.

Then we looked at using feedback control to eliminate these cavity resonances, and

two control strategies were considered. First, standard H2 robust control methods –

specifically a Linear Quadratic Gaussian regulator – were applied to the cavity flow,

the state-space model for which being provided by the Eigensystem Realization Algo-

rithm (ERA). The LQG regulator provides control over a much wider Mach number

range than seen previously in the literature. Second, we looked at using the adaptive

controller, earlier developed for combustion oscillations, to the cavity flow using col-

located control. The adaptive controller achieves closed-loop stability over an even

wider Mach number range.

This thesis has considered both robust (H2) control and adaptive control for sta-

bilizing thermo-acoustic and fluid-acoustic resonances. These two control approaches

are distinct, and bring with them their own sets of advantages and inconveniences.

Robust control makes no restrictions on the dynamics of the open-loop system, such

as the locations of its zeros or its relative degree, and the open-loop system’s being

observable and controllable is sufficient. This flexibility comes at a price, since an

accurate dynamical model of the system must be available, and this can be difficult to

obtain, especially for unstable systems. The adaptive controller considered requires no

such model of the system, and control can be achieved over a wide range of operating

conditions, which has been observed both for combustion systems and for cavity reso-

nances. However, the open-loop system must meet some general properties, and these

in themselves can be restrictive: for combustion oscillations, they place demands on

the nature of acoustic and entropy disturbances; and for cavity resonances, they could

only be met using collocated control.
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7.2 SUGGESTIONS FOR FUTURE WORK

Although feedback control of combustion oscillations has already been demonstrated

at large- and full-scale, most studies involve simple phase-locked loops. It seems, then,

that there is scope for more sophisticated controllers – which could include robust and

adaptive control – at large- and full-scale, and in particular for annular geometries,

allowing the adaptive controller for circumferential modes developed in this thesis to

be applied experimentally.

In terms of adaptive control, it seems that it is possible to adaptively stabilize a sys-

tem without knowledge of the sign of its high-frequency gain, although the controller

required to achieve it becomes more complex. The adaptive controller used, though,

is slightly at odds with the assumption made earlier in this thesis regarding the rela-

tive degree of a general combustion system. For a system with a relative degree not

exceeding two, a feedback controller must provide both gain and phase compensation,

and yet the Nussbaum gain controller provides only a feedback gain. The development

of an adaptive controller which utilizes a Nussbaum-type function and which provides

gain and phase compensation would resolve this.

It is encouraging that a simple linear model of cavity resonances can be used to

predict the system’s transfer function with a reasonable level of success, and which is

certainly useful for feedback control purposes. What remains to be seen is whether

a feedback controller designed using this simple linear model would be successful

in stabilizing the system in direct numerical simulations, and then whether the same

strategy could be used to model the system – and therefore to design a model-based

controller – at other Mach numbers. The emphasis, as it has been in this thesis, would

need to be on providing the information that is important for feedback control. This

seems to lend itself to H∞ loop-shaping techniques and to ν-gap metric analysis, which

indicates in what sense a model should be accurate if it is to be useful for feedback

design (Vinnicombe, 2000).

Finally, it seems that there is still scope for an adaptive controller that is more

well-suited to the control of cavity resonances, and which does not rely on collocated

control. This could be achieved by further development of the Lyapunov-based adap-

tive controller, although presumably this will result in a higher-order and therefore
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more complex controller. An alternative approach would be to develop a different type

of feedback controller which did not rely on any general properties of the open-loop

system, and Model Predictive Control (MPC) seems particularly attractive, since it can

be applied to systems with many inputs and many outputs; to both linear and non-

linear systems; and to systems with constraints (Maciejowski, 2002). MPC has found

diverse applications in systems with slow dynamics, in particular in the petrochemical

industry. The main barrier to its application to faster processes is the computational

burden of the method and therefore its restriction to low sampling frequencies. This

constraint is being overcome with more powerful computing capabilities and more ef-

ficient optimization algorithms. Of course, such techniques could equally be applied

to combustion oscillations, and this seems a promising area for future research.



APPENDIX A

GENERAL PROPERTIES OF COMBUSTION SYSTEMS

Here we repeat part of the analysis of Evesque (2000), but consider both longitudinal

and circumferential modes. Referring to figure 3.2, for the single-input single-output

(B = T = 1), longitudinal geometry case, Evesque made some general assumptions

about the open-loop transfer function P(s). She assumed that the actuator transfer

function L(s) had a relative degree not exceeding two, and that the flame transfer func-

tion F(s) was stable and had limited bandwidth, i.e.

lim
ω→∞

F(iω) = 0.

For the modal open-loop transfer function given by equation (3.2), the actuator transfer

function Lb(s) and the flame transfer function Fb(s) are both for an individual burner,

and so the assumptions on the actuator and the flame are still valid in this case.

Another key part of Evesque’s analysis, however, was to use a wave expansion

of the acoustic field to characterize the acoustic transfer function G(s) between the

unsteady heat release and the pressure perturbation. By doing so Evesque was able to

show that the relative degree of P(s) was given by the relative degree of the actuator

L(s), and that all of the zeros of G(s) (and therefore of P(s)) would be in the left half-

plane. These results do not necessarily hold for the modal case Gn(s), and so we repeat

this part of the analysis here, but use a wave expansion that includes circumferential

dependence, which is important for the annular geometries of chapter 3.

Figure A.1 shows a general combustion chamber, which could represent a longi-

tudinal geometry, or one half of a circumferential slice through an annular geometry.
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Chapter 3. Adaptive control of circumferential modes 27

3.1 Theory

3.1.1 Plant transfer function

Before implementing an adaptive controller for circumferential modes, we

must first reconsider the three characteristics of the combustion system pre-

sented in §2.1.1. For the modal transfer functions, two of these conditions

are automatically met: that the relative degree of the open-loop system is

the same as the relative degree of the actuator; and that the sign of the high

frequency gain is positive 1. The remaining assumption - that the zeros of the

open-loop plant all lie in the left half-plane - is not necessarily met, however,

and it is this condition that we concern ourselves with here.

We will derive an analytical expression for the modal transfer function W n(s)

for a circumferential mode in an annular combustor of the form shown in

figure 3.1. Here, n denotes the circumferential mode number. For a thin

annulus, we can set the radial velocity v′ to zero and ignore radial dependence

of the flow parameters. We also assume zero swirl velocity w′ = 0 2. Figure

3.1 shows a one half of a circumferential slice through the annulus of the

combustor. Zone 1, upstream of the flame, has downstream propagating

wave f and upstream propagating wave g. Zone 2, downstream of the flame,

has downstream propagating wave h and upstream propagating wave j.

xu x = 0 xd

Ru Rd

f

g

h

j

1 2

Q

Flame

Figure 3.1: One half of a circumferential slice through the combustor annulus

We will neglect the conversion of combustion generated entropy waves into

1this condition is looked at in more detail in §4
2including swirl would not change the equations of conservation of mass, momentum

and energy across the flame. It would, however, change the expression for the wave number

FIGURE A.1: Disturbances in a combustion chamber.

Evesque (2000) looked at the longitudinal case, but we concentrate on the annular case

here. Upstream of the flame (zone 1) is a downstream propagating wave f and an

upstream propagating wave g, and downstream of the flame (zone 2) is a downstream

propagating wave h and an upstream propagating wave j. For a thin annulus, we can

set the radial velocity v′ to zero and ignore radial dependence of the flow parameters.

We also assume zero swirl velocity w′ = 0.1

We will neglect the conversion of combustion-generated entropy waves into acous-

tic waves at the downstream nozzle. This will be a good approximation when the time

taken for the entropy waves to convect through the duct exceeds their diffusion time.

We assume that the reflection coefficients at the upstream and downstream boundaries

satisfy |Ru(s)| < 1 and |Rd(s)| < 1. For linear disturbances, the perturbation in the

pressure p′, density ρ ′ and axial velocity u′ are given by (Stow & Dowling, 2001)

p′ = A±eiωt+ik±x+inθ

ρ
′ =

1
c2 A±eiωt+ik±x+inθ

u′ =− k±
ρα±

A±eiωt+ik±x+inθ ,

(A.1)

where c is the mean speed of sound and

ck± =
Mω∓ [ω2− (cn

R )2(1−M2)]
1
2

1−M2 (A.2a)

α± = ω + cMk±. (A.2b)

1Including swirl would not change the equations of conservation of mass, momentum and energy
across the flame, but it would change the expression for the wave number.
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The + and the − subscripts refer to the f ,h and g, j waves respectively, depending on

which zone the equations are applied to. M is the mean Mach number (assumed to be

less than unity) and R is the mean radius of the annulus. The cut-off frequency ωc is

given by

ωc =
cn
R

(1−M2)
1
2 ,

and R is the combustor radius. For ω < ωc, the waves decay and mode n is ‘cut-off’.

The equations of conservation of mass, momentum and energy across the combus-

tion zone can be written in a form independent of downstream density and temperature

(Dowling, 1997):

p2− p1 +ρ1u1(u2−u1) = 0
γ

γ−1
(p2u2− p1u1)+

1
2

ρ1u1(u2
2−u2

1) =
Q

Acomb
,

where Acomb is the cross-sectional area of the combustor. We now set each flow vari-

able to a mean value plus a perturbation (u1 = u1 + u′1 for example, with u1 the mean

velocity and u′1 the perturbation). Linearizing these equations, and using the boundary

conditions at the upstream and downstream boundaries

f eik f xu = Rugeikgxu

jeik jxd = Rdheikhxd ,

we arrive at a matrix equation in the frequency domain:

[
X11 X12

X21 X22

](
g

h

)
=

[
Y11 Y12

Y21 Y22

](
Rugei(kg−k f )xu

Rdhei(kh−k j)xd

)
+

(
0
Q′

Acombc1

)
. (A.3)

The full expressions for the X and Y matrices are given in appendix B. Expressed

in the time domain, (A.3) would give the time evolution of the outgoing waves g(t) and

h(t) in terms of the unsteady heat release Q′(t). Using (A.3) we can find a frequency-

domain expression relating the modal pressure pn
ref (at some axial location xref) to the

modal unsteady heat release at the flame Q′n. When measuring pn
ref downstream of the
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flame, we find

pn
ref(s)

Q′n(s)
=

[X11(s)−RuY11(s)ei(kg−k f )xu][1+Rdei(kh−k j)(xd−xref)]
Acombc1

eikhxref

= Gn
0(s)e

ikhxref

= Gn(s).

(A.4)

Giving an expression for Gn(s) from equation (3.2) as the product of a transfer function

Gn
0(s) and a pure time delay. If the pressure is instead measured upstream of the flame,

this becomes

pn
ref(s)

Q′n(s)
=

[Y12(s)Rdei(kh−k j)xd −X12(s)][1+Ruei(k f−kg)(xref−xu)]
Acombc1

eikgxref

= Gn
0(s)e

ikgxref

= Gn(s).

(A.5)

We now concentrate on the upstream-sensing case (A.5). For the longitudinal case (n =

0), (A.5) simplifies and the X and Y matrices become independent of frequency (see

appendix B). By forming a rational approximation to G0
0(s) using Padé approximants

of its time delays, Evesque showed that, for longitudinal modes

(i) the relative degree of the overall open-loop transfer function P0(s) is equal to the

relative degree of the actuator L(s)

(ii) G0
0(s) (and therefore P0(s)) has only left half-plane zeros.

With the additional circumferential dependence of the flow variables, the same

Padé approximant technique can be used to find a rational approximation to Gn
0(s), and

assumption (i) regarding the relative degree of the modal open-loop transfer function

Pn(s) can still be made. Assumption (ii) regarding the position of the zeros of Gn
0(s) is

not necessarily met, though, and now we look at this condition in more detail.

We want to show that any zeros of Gn
0(s) lie in the left half-plane of the Laplace

variable s = iω , which is equivalent to their lying in the upper half-plane of the complex



123

frequency ω . For upstream-sensing (A.5), zeros may occur when either

|ei(kh−k j)xd |= |X12(s)|
|Rd(s)Y12(s)|

, (A.6a)

or

|ei(k f−kg)(xref−xu)|= 1
|Ru(s)|

. (A.6b)

(These conditions are necessary but not sufficient, since the phase of the left hand-

side and right hand-side of (A.6a) or (A.6b) must also be equal for a zero to occur.) We

will now see that any zeros that lie well above the cut-off frequency ωc (i.e. frequencies

for which ω2� ω2
c ) must lie in the left half-plane, Re(s) < 0.

For frequencies well above cut-off, the X and Y matrices simplify to expressions

that are independent of frequency (see appendix B), and then |X12| > |Y12|. There-

fore, since |Rd(s)|< 1 and |Ru(s)|< 1 by assumption, a zero can only occur when the

magnitude of the exponential term in (A.6a) or (A.6b) is greater than one. Well above

cut-off, these two equations become

e−sτd =
|X12|

|Rd(s)Y12|
(A.7a)

e−sτu =
1

|Ru(s)|
, (A.7b)

where τd and τu are acoustic propagation times given by τd = 2xd/(c2(1−M2
2)) and

τu = 2(xref−xu)/(c1(1−M2
2)). Therefore the magnitude of the exponential terms can

only be greater than one – and zeros can only occur – in the upper half-plane of ω ,

which corresponds to the left half-plane for the Laplace variable s. A similar proof can

be shown for downstream pressure sensing, if one makes the further assumption that

u2

u1
≥ 2−M1

1−M1
.
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APPENDIX B

X AND Y MATRICES

Here we collect together the full expressions for the X and Y matrices introduced in

chapter 2 for two cases: (i) the general case; and (ii) for frequencies well above the

cut-off frequency. For simplicity, we drop the over-bar notation for a mean value in the

flow parameters c, M and u, the mean value now being implied.

GENERAL CASE

The four terms in the X matrix introduced in appendix A are

X11(s) =−1+
kgc1

αg
M1

(
2− u2

u1

)
+M2

1

(
u2

u1
−1
)

,

X12(s) = 1−M2
khc2

αh
,

X21(s) =
kgc1
αg
− γM1

γ−1
+

kgc1

αg
M2

1 +
1
2

M2
1

(
M1−

kgc1

αg

)(
u2

2
u2

1
−1
)

,

X22(s) =
c2

c1

−khc2
αh

+ γM2

γ−1
− khc2

αh
M1M2

ρ1

ρ2
,
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and the four terms in the Y matrix are

Y11(s) = 1− k f c1

α f
M1

(
2− u2

u1

)
−M2

1

(
u2

u1
−1
)

,

Y12(s) =−1+M2
k jc2

α j
,

Y21(s) =

−k f c1
α f

+ γM1

γ−1
− k f c1

α f
M2

1 −
1
2

M2
1

(
M1−

k f c1

α f

)(
u2

2
u2

1
−1
)

,

Y22(s) =
c2

c1

k jc2
α j

+ γM2

γ−1
+

k jc2

α j
M1M2

ρ1

ρ2
.

WELL ABOVE CUT-OFF

For frequencies well above the cut-off frequency ω2 � ω2
c , the X and Y matrices

can be approximated by expressions independent of frequency. These are the same

expressions that one finds for the longitudinal case, since ω2 � ω2
c is equivalent to

saying that the term cn
R (1−M2)1/2 in (A.2a) is negligible. For X we have

X11 =−1+M1

(
2− u2

u1

)
+M2

1

(
u2

u1
−1
)

,

X12 = 1+M2,

X21 =
1− γM1

γ−1
+M2

1 +
1
2

M2
1 (M1−1)

(
u2

2
u2

1
−1
)

,

X22 =
c2

c1

1+ γM2

γ−1
+M1M2

ρ1

ρ2
,

and for Y

Y11 = 1+M1

(
2− u2

u1

)
−M2

1

(
u2

u1
−1
)

,

Y12 =−1+M2,

Y21 =
1+ γM1

γ−1
+M2

1 −
1
2

M2
1 (M1 +1)

(
u2

2
u2

1
−1
)

,

Y22 =
c2

c1

1+ γM2

γ−1
+M1M2

ρ1

ρ2
.
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PROOF OF CLOSED-LOOP STABILITY FOR A NUSSBAUM GAIN

We consider the first order system (4.1). For the more general case of minimum phase,

n∗ = 1 systems, see Willems & Byrnes (1984). The first order system (4.1) can be

written in the time domain as

ẏ(t) = ay(t)+g0u(t). (C.1)

Suppose the adaptive control law1

k̇(t) = y2(t)

u(t) = N(k)y(t)

is used, where N(k) is the Nussbaum gain. The resulting closed-loop system is given

by

ẏ(t) = ay(t)+g0N(k)y(t) (C.2)

k̇(t) = y2(t). (C.3)

We want to find a Nussbaum gain that will guarantee closed-loop stability without

knowledge of the sign of g0. To study the closed-loop stability of the system, we

1Note the positive feedback convention used here, which is the opposite of that used in chapter 4
(equation (4.3)): the Nussbaum gain is ultimately insensitive to the sign adopted, and we adopt a positive
convention for simplicity.
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introduce an indicator function,

Λ(t) =
1
2

y2(t). (C.4)

Evaluating Λ̇(t) along solutions to (C.2) gives

Λ̇(t) = y(t)ẏ(t)

= {a+g0N(k)}y2(t)

= {a+g0N(k)}k̇(t)

Integrating over time t (using k(0) = k0 and introducing σ = k(τ)), we have

∫ t

0
Λ̇(τ)dτ = a

∫ t

0
k̇(τ)dτ +g0

∫ t

0
N(σ)k̇(τ)dτ (C.5)

= a[k(t)− k0]+g0

∫ k(t)

k0

N(σ)dσ (C.6)

and so

Λ(t)−Λ(0) = [k(t)− k0]
{

a+
g0

k(t)− k0

∫ k(t)

k0

N(σ)dσ

}
. (C.7)

Suppose that the Nussbaum gain N(σ) satisfies the two conditions

sup
k>k0

1
k− k0

∫ k

k0

N(σ)dσ = ∞

inf
k>k0

1
k− k0

∫ k

k0

N(σ)dσ =−∞.

(C.8)

Seeking a contradiction, suppose that k(t)→∞ as t→∞ (from (C.3), k(t) is monotone

non-decreasing). Since the Nussbaum gain (C.8) takes arbitrarily large positive and

negative values as k(t)→ ∞, we derive a contradiction at (C.7). Therefore k(t) must

be bounded. From (C.3), this is equivalent to y(t) ∈ L2(0,∞]. Then from (C.2) ẏ(t) ∈
L2(0,∞]. Finally, lemma 2.12, Narendra & Annaswamy (1989) shows that y(t) is

guaranteed to converge asymptotically to zero.



APPENDIX D

ADAPTATION RATES FOR THE NUSSBAUM GAIN

The adaptation rates γ and µ , introduced into the adaptive controller’s updating rule

(4.5) and control law (4.6–4.7) in § 4.3.2 are now explained in more detail, together

with details of how they are chosen.

CHOOSING γ

Looking at the updating rule (4.5), one can see that γ sets the rate at which k adapts.

Therefore γ can be set by specifying the desired speed of adaptation of k (Yildiz et al.,

2007). If k starts at zero, this corresponds to 3τn for a 5% band around the set point

(where τn is the period of the unstable mode):

k̇(t) = γ p2(t) =
|k∗|
3τn

,

and therefore

γ =
|k∗|

3τn p̂2 ,

where k∗ is the value of k for which closed-loop stability is achieved, and p̂ is a char-

acteristic value of p. The value of k∗ will depend on whether the Nussbaum gain is

initially updated in the right direction. To get around this we assume that the Nuss-

baum gain is initially updated in the right direction – then k∗ will be similar in size to

N∗, i.e.

γ =
|N∗|

3τn p̂2 .
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If the Nussbaum gain is instead initially updated in the wrong direction, then this sim-

ply means that the controller will take longer to reach k∗ (and therefore N∗) and achieve

closed-loop stability.

CHOOSING µ

Looking at the Nussbaum gain used (4.7), one can see that µ dictates, via the cosine

term, exactly when N(k) will switch sign. The Nussbaum gain N(k) provides closed-

loop stability by providing a gain that is (i) large enough and (ii) of the right sign.

Furthermore, N(k) only needs to switch sign once (if at all). Therefore it suffices to

ensure, via µ , that N(k) sweeps over a sufficiently large gain before it switches sign.

This will allow the controller to ‘try’ a big enough gain before N(k) switches sign.

We can ensure that this happens by specifying the turning point of N(k), that is by

specifying the value of N(k) at which dN
dt = 0:

dN
dt

=
dN
dk

dk
dt

= 0.

We already have an expression for dk
dt (4.5): this is zero when p is zero. Therefore we

are interested in dN
dk = 0. From (4.7),

dN
dk

= cos(µ|kt |
1
4 )− 1

4 µ|kt |
1
4 sin(µ|kt |

1
4 ) = 0,

where kt is the k for which dN
dk = 0. Letting µ|kt |

1
4 = X , we have

X tanX = 4,

which we can solve for X . We need two equations for the two unknowns µ and kt : the

second equation comes from specifying Nt , the value of N(k) for which dN
dk = 0, i.e.

Nt = N(k)| dN
dk =0 = kt cos(µ|kt |

1
4 )

Nt = kt cosX .
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Then kt and µ can be found using

kt =
Nt

cosX
µ = X |kt |−

1
4 .

Therefore to choose the two adaption rates γ and µ , it suffices to have an estimate (to

order of magnitude accuracy only) of N∗, τn and p̂. In addition, Nt needs to be chosen

so that Nt > |N∗| is guaranteed.
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