479 research outputs found

    Clinical surveillance of thrombotic microangiopathies in Scotland, 2003-2005

    Get PDF
    The prevalence, incidence and outcomes of haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopaenic purpura (TTP) are not well established in adults or children from prospective studies. We sought to identify both outcomes and current management strategies using prospective, national surveillance of HUS and TTP, from 2003 to 2005 inclusive. We also investigated the links between these disorders and factors implicated in the aetiology of HUS and TTP including infections, chemotherapy, and immunosuppression. Most cases of HUS were caused by verocytotoxin-producing Escherichia coli (VTEC), of which serotype O157 predominated, although other serotypes were identified. The list of predisposing factors for TTP was more varied although use of immunosuppressive agents and severe sepsis, were the most frequent precipitants. The study demonstrates that while differentiating between HUS and TTP is sometimes difficult, in most cases the two syndromes have quite different predisposing factors and clinical parameters, enabling clinical and epidemiological profiling for these disorders

    Information gap for classical and quantum communication in a Schwarzschild spacetime

    Get PDF
    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channels. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum coherent information tends to zero. We conclude that classical correlations still exist at infinite acceleration, whereas the quantum coherence is fully removed.Comment: 5 pages, 4 figure

    Starworld: Preparing Accountants For The Future: A Case-Based Approach To Teach International Financial Reporting Standards Using ERP Software

    Get PDF
    International Financial Reporting Standards now constitute an important part of educating young professional accountants.  This paper looks at a case based process to teach International Financial Reporting Standards using integrated Enterprise Resource Planning software.  The case contained within the paper can be used within a variety of courses to teach International Financial Reporting Standards within an ethical framework.  This case does not require access to a live SAP ECC 6.0 server.  Students desiring a real time technical experience can either use a live system or utilize the practice capability within this case.  The product demonstrated uses the current version of SAP ECC 6.0

    Hypoxia-inducible Gene Domain 1 Proteins in Yeast Mitochondria Protect Against Proton Leak Through Complex IV

    Get PDF
    Hypoxia-inducible gene domain 1 (HIGD1) proteins are small integral membrane proteins, conserved from bacteria to humans, that associate with oxidative phosphorylation supercomplexes. Using yeast as a model organism, we have shown previously that its two HIGD1 proteins, Rcf1 and Rcf2, are required for the generation and maintenance of a normal membrane potential (ΔΨ) across the inner mitochondrial membrane (IMM). We postulated that the lower ΔΨ observed in the absence of the HIGD1 proteins may be due to decreased proton pumping by complex IV (CIV) or enhanced leak of protons across the IMM. Here we measured the ΔΨ generated by complex III (CIII) to discriminate between these possibilities. First, we found that the decreased ΔΨ observed in the absence of the HIGD1 proteins cannot be due to decreased proton pumping by CIV because CIII, operating alone, also exhibited a decreased ΔΨ when HIGD1 proteins were absent. Because CIII can neither lower its pumping stoichiometry nor transfer protons completely across the IMM, this result indicates that HIGD1 protein ablation enhances proton leak across the IMM. Second, we demonstrate that this proton leak occurs through CIV because ΔΨ generation by CIII is restored when CIV is removed from the cell. Third, the proton leak appeared to take place through an inactive population of CIV that accumulates when HIGD1 proteins are absent. We conclude that HIGD1 proteins in yeast prevent CIV inactivation, likely by preventing the loss of lipids bound within the Cox3 protein of CIV

    Thalamocortical dysfunction and thalamic injury after asphyxial cardiac arrest in developing rats

    Get PDF
    Global hypoxia-ischemia interrupts oxygen delivery and blood flow to the entire brain. Previous studies of global brain hypoxia ischemia have primarily focused on injury to the cerebral cortex and to the hippocampus. Susceptible neuronal populations also include inhibitory neurons in the thalamic Reticular Nucleus. We therefore investigated the impact of global brain hypoxia-ischemia on the thalamic circuit function in the somatosensory system of young rats. We used single neuron recordings and controlled whisker deflections to examine responses of thalamocortical neurons to sensory stimulation in rat survivors of 9 min of asphyxial cardiac arrest incurred on post-natal day 17. We found that 48–72 hours after cardiac arrest, thalamocortical neurons demonstrate significantly elevated firing rates both during spontaneous activity and in response to whisker deflections. The elevated evoked firing rates persist for at least 6–8 weeks after injury. Despite the overall increase in firing, by 6 weeks, thalamocortical neurons display degraded receptive fields, with decreased responses to adjacent whiskers. Nine min of asphyxial cardiac arrest was associated with extensive degeneration of neurites in the somatosensory nucleus as well as activation of microglia in the Reticular Nucleus. Global brain hypoxia-ischemia during cardiac arrest has a long-term impact on processing and transfer of sensory information by thalamic circuitry. Thalamic circuitry and normalization of its function may represent a distinct therapeutic target after cardiac arrest

    Tele-Supervised Adaptive Ocean Sensor Fleet

    Get PDF
    The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms

    Fundamental limitations to information transfer in accelerated frames

    Get PDF
    We study communication between an inertial observer and one of two causally-disconnected counter accelerating observers. We will restrict the quantum channel considering inertial-to-accelerated bipartite classical and quantum communication over different sets of Unruh modes (single-rail or dual-rail encoding). We find that the coherent information (and therefore, the amount of entanglement that can be generated via state merging protocol) in this strongly restricted channel presents some interesting monogamy properties between the inertial and only one of the accelerated observers if we take a fixed choice of the Unruh mode used in the channel. The optimization of the controllable parameters is also studied and we find that they deviate from the values usually employed in the literature.Comment: 7 pages, 6 figure

    Palpable pediatric thyroid abnormalities – diagnostic pitfalls necessitate a high index of clinical suspicion: a case report

    Get PDF
    A 12-year-old girl presented with a 4 year history of an enlarged, firm thyroid gland. On exam, her thyroid was firm and fixed and an enlarged cervical lymph node was palpable as well. Though a thyroid ultrasound prior to referral was read as thyroiditis, clinical suspicion for thyroid carcinoma mandated continued investigation. The diagnosis of papillary thyroid cancer was established and her workup revealed lymph node metastases as well as a tremendous burden of pulmonary metastases. Pediatric thyroid cancer is extremely rare, but often presents with aggressive disease. Palpable thyroid abnormalities in an individual under 20-years-old should be viewed with suspicion and should be thoroughly investigated to rule out malignancy even in the face of negative diagnostic procedures. Though pediatric papillary thyroid cancer often presents with loco-regional and even distant metastatic disease, mortality rates in follow-up for as long as 20 years are very favorable

    Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis

    Get PDF
    The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons
    corecore