1,493 research outputs found

    Discrete nonlinear Schrödinger equations for periodic optical systems : pattern formation in \chi(3) coupled waveguide arrays

    Get PDF
    Discrete nonlinear Schrödinger equations have been used for many years to model the propagation of light in optical architectures whose refractive index profile is modulated periodically in the transverse direction. Typically, one considers a modal decomposition of the electric field where the complex amplitudes satisfy a coupled system that accommodates nearest neighbour linear interactions and a local intensity dependent term whose origin lies in the χ (3) contribution to the medium's dielectric response. In this presentation, two classic continuum configurations are discretized in ways that have received little attention in the literature: the ring cavity and counterpropagating waves. Both of these systems are defined by distinct types of boundary condition. Moreover, they are susceptible to spatial instabilities that are ultimately responsible for generating spontaneous patterns from arbitrarily small background disturbances. Good agreement between analytical predictions and simulations will be demonstrated

    Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    Get PDF
    BACKGROUND: Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. METHODOLOGY/PRINCIPAL FINDINGS: Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. CONCLUSIONS: Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered

    Particle Swarm Transport in Porous Media

    Get PDF
    In recent years, interest in particulate transport in the subsurface has increased with the increased use of micro-particulates in consumer products. In this research, we study particulate swarm transport through porous media that depends on the complexity of the flow paths, on the size and shape of the particles and on the physical interactions among the particles, fluids, and matrix. Specifically, we investigate the effect of pore geometry and grain wettability on swarm evolution under gravity. Swarms were composed of 3 micron polystyrene beads in either water or water with KCL (%). Two types of grains are used to simulate a porous medium: (1) hydrogel spheres that are hydrophyllic and (2) 3D printed PMMA spheres that are hydrophobic. We found that a hydrophillic matrix resulted in a wider transport path and caused an increase in bifurcations when compared with the hydrophobic PMMA. We also observed that as the swarms increased in volume the number of bifurcations increased. Bifurcations occurred around the beads creating a more widespread dispersed transport path. The potential spread of particulate contaminants by swarms will depend on the hydrophobicity or hydrophilicity the grains, yielding either increased dispersion or more highly localized concentrations

    Novel sphingosine-containing analogues selectively inhibit sphingosine kinase (SK) isozymes, induce SK1 proteasomal degradation and reduce DNA synthesis in human pulmonary arterial smooth muscle cells

    Get PDF
    Sphingosine 1-phosphate (S1P) is involved in hyper-proliferative diseases such as cancer and pulmonary arterial hypertension. We have synthesized inhibitors that are selective for the two isoforms of sphingosine kinase (SK1 and SK2) that catalyze the synthesis of S1P. A thiourea adduct of sphinganine (F02) is selective for SK2 whereas the 1-deoxysphinganines 55-21 and 77-7 are selective for SK1. (2S,3R)-1-Deoxysphinganine (55-21) induced the proteasomal degradation of SK1 in human pulmonary arterial smooth muscle cells and inhibited DNA synthesis, while the more potent SK1 inhibitors PF-543 and VPC96091 failed to inhibit DNA synthesis. These findings indicate that moderate potency inhibitors such as 55-21 are likely to have utility in unraveling the functions of SK1 in inflammatory and hyperproliferative disorders
    corecore