10 research outputs found

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit

    General structural motifs of amyloid protofilaments

    No full text
    Human CA150, a transcriptional activator, binds to and is co-deposited with huntingtin during Huntington's disease. The second WW domain of CA150 is a three-stranded β-sheet that folds in vitro in microseconds and forms amyloid fibers under physiological conditions. We found from exhaustive alanine scanning studies that fibrillation of this WW domain begins from its denatured conformations, and we identified a subset of residues critical for fibril formation. We used high-resolution magic-angle-spinning NMR studies on site-specific isotopically labeled fibrils to identify abundant long-range interactions between side chains. The distribution of critical residues identified by the alanine scanning and NMR spectroscopy, along with the electron microscopy data, revealed the protofilament repeat unit: a 26-residue nonnative β-hairpin. The structure we report has similarities to the hairpin formed by the A(β)((1–40)) protofilament, yet also contains closely packed side-chains in a “steric zipper” arrangement found in the cross-β spine formed from small peptides from the Sup35 prion protein. Fibrillation of unrelated amyloidogenic sequences shows the common feature of zippered repeat units that act as templates for fiber elongation

    Secondary-structure prediction revisited: Theoretical β-sheet propensity and coil propensity represent structures of amyloids and aid in elucidating phenomena involved in interspecies transmission of prions

    Get PDF
    Prions are unique infectious agents, consisting solely of abnormally-folded prion protein (PrPSc). However, they possess virus-like features, including strain diversity, the ability to adapt to new hosts and to be altered evolutionarily. Because prions lack genetic material (DNA and RNA), these biological phenomena have been attributed to the structural properties of PrPSc. Therefore, many structural models of the structure of PrPSchave been proposed based on the limited structural information available, regardless of the incompatibility with high-resolution structural analysis. Recently hypothesized models consist solely of β- sheets and intervening loops/kinks; i.e. parallel in-register β-sheet and β-solenoid models. Owing to the relative simplicity of these structural models of PrPSc, we hypothesized that numerical conversion of the primary structures with a relevant algorithm would enable quantitative comparison between PrPs of distinct primary structures. We therefore used the theoretical values of β-sheet (Pβ) and random-coil (Pc) propensity calculated by secondary structure prediction with a neural network, to analyze interspecies transmission of prions. By reviewing experiments in the literature, we ascertained the biological relevance of Pβ and Pc and found that these classical parameters surprisingly carry substantial information of amyloid structures. We also demonstrated how these parameters could aid in interpreting and explaining phenomena in interspecies transmissions. Our approach can lead to the development of a versatile tool for investigating not only prions but also other amyloids
    corecore