474 research outputs found

    Malingering in clinical practice with specific reference to psychiatry and psychology

    Get PDF
    No Abstrac

    Elder Law: A Guide to Key Resources

    Get PDF
    This research guide identifies and describes 163 books, periodicals, reference tools, databases, electronic discussion groups, organizations, and U.S. government agencies useful to the elder law practitioner and the legal researcher. Appendices include a state-by-state list of state aging agencies, bar association committees and sections, law school courses and clinics, and publications; acronyms; and subject headings and a index terms used in library catalogs, periodical indexes, and related sources

    Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications

    Get PDF
    Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers. These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton translocation. The core complex of this enzyme is made up of 11 protein subunits, with three major proton pumping subunits. Here, we document a large number of modified complex I gene cassettes found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and environmentally derived archaeal fosmids all of which encode a fourth proton pumping subunit. The incorporation of this extra subunit into a functional protein complex is supported by large amino acid insertions in the amphipathic helix that runs the length of the protein complex. Phylogenetic analyses reveal that these modified complexes appear to have arisen independently multiple times in a remarkable case of convergent molecular evolution. From an energetic perspective, we hypothesize that this modification on the canonical complex I architecture allows for the translocation of a fifth proton per reaction cycle—the physiological utility of this modified complex is discussed

    Sidewall Buckling of Equal-width RHS Truss X-Joints

    Get PDF
    This paper presents a new design methodology for equal-width rectangular hollow section (RHS) X-joints failing by sidewall buckling. In the new approach, a slenderness parameter is defined based on the elastic local buckling stress of the sidewall, idealized as an infinitely long plate under patch loading. A Rayleigh-Ritz approximation is thereby used to obtain a closed-form solution. The proposed design equation is verified against experimental results over a wide range of wall slenderness values obtained from the literature and complemented by a brief experimental program carried out by the authors. It is demonstrated that the new design equation yields excellent results against the experimental data. Finally, a reliability analysis is performed within the framework of both the Eurocode and the AISI standards to ensure that the proposed design equation possesses the required level of safety. The newly proposed equation strongly outperforms the current Comité International pour le Développement et l’Etude de la Construction Tubulaire (CIDECT) design rule for sidewall buckling and also further extends the range of applicability to a wall slenderness ratio of up to 50

    Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications

    Get PDF
    Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers. These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton translocation. The core complex of this enzyme is made up of 11 protein subunits, with three major proton pumping subunits. Here, we document a large number of modified complex I gene cassettes found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and environmentally derived archaeal fosmids all of which encode a fourth proton pumping subunit. The incorporation of this extra subunit into a functional protein complex is supported by large amino acid insertions in the amphipathic helix that runs the length of the protein complex. Phylogenetic analyses reveal that these modified complexes appear to have arisen independently multiple times in a remarkable case of convergent molecular evolution. From an energetic perspective, we hypothesize that this modification on the canonical complex I architecture allows for the translocation of a fifth proton per reaction cycle—the physiological utility of this modified complex is discussed

    Crown group Oxyphotobacteria postdate the rise of oxygen

    Get PDF
    The rise of oxygen ca. 2.3 billion years ago (Ga) is the most distinct environmental transition in Earth history. This event was enabled by the evolution of oxygenic photosynthesis in the ancestors of Cyanobacteria. However, long-standing questions concern the evolutionary timing of this metabolism, with conflicting answers spanning more than one billion years. Recently, knowledge of the Cyanobacteria phylum has expanded with the discovery of non-photosynthetic members, including a closely related sister group termed Melainabacteria, with the known oxygenic phototrophs restricted to a clade recently designated Oxyphotobacteria. By integrating genomic data from the Melainabacteria, cross-calibrated Bayesian relaxed molecular clock analyses show that crown group Oxyphotobacteria evolved ca. 2.0 billion years ago (Ga), well after the rise of atmospheric dioxygen. We further estimate the divergence between Oxyphotobacteria and Melainabacteria ca. 2.5–2.6 Ga, which—if oxygenic photosynthesis is an evolutionary synapomorphy of the Oxyphotobacteria—marks an upper limit for the origin of oxygenic photosynthesis. Together, these results are consistent with the hypothesis that oxygenic photosynthesis evolved relatively close in time to the rise of oxygen

    Predicting tree distributions in an East African biodiversity hotspot : model selection, data bias and envelope uncertainty

    Get PDF
    The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1 km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix. (C) 2008 Elsevier B.V. All rights reserved
    corecore