1,250 research outputs found

    NLO Leptoquark Production and Decay: The Narrow-Width Approximation and Beyond

    Get PDF
    We study the leptoquark model of Buchm\"uller, R\"uckl and Wyler, focusing on a particular type of scalar (R2R_2) and vector (U1U_1) leptoquark. The primary aim is to perform the calculations for leptoquark production and decay at next-to-leading order (NLO) to establish the importance of the NLO contributions and, in particular, to determine how effective the narrow-width-approximation (NWA) is at NLO. For both the scalar and vector leptoquarks it is found that the NLO contributions are large, with the larger corrections occurring for the case vector leptoquarks. For the scalar leptoquark it is found that the NWA provides a good approximation for determining the resonant peak, however the NWA is not as effective for the vector leptoquark. For both the scalar and vector leptoquarks there are large contributions away from the resonant peak, which are missing from the NWA results, and these make a significant difference to the total cross-section.Comment: 22 pages, 17 figure

    Match-Making for Stability: A Survey of the Stable Marriage Problem

    Get PDF

    Careers in Mathematics

    Get PDF

    On Comparability of Random Permutations

    Get PDF

    On the utility of i = √-1

    Get PDF

    Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX

    Get PDF
    The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma beta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates' dependency on GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure

    Transition from collisionless to collisional MRI

    Full text link
    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic field regime where the Alfv\'en and MRI frequencies ω\omega are small compared to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively collisionless even if ων\omega \ll \nu, so long as the collision frequency \nu \ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega \sqrt{\beta}. The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of anisotropic pressure closure from drift kinetic equatio

    Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence

    Full text link
    Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range kρi1k_\perp\rho_i\gtrsim 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
    corecore