MATCH-MAKING FOR STABILTY

A Survey of the Stable Ma miage Problem

Ada m J. Hammett, Ph.D.
Cedarville University

DAVID GALE \& LLOYD SHAPLEY

 COLEG E ADMISSIONS AND THE STABILTY OF MARRIAGE THE AMERIC AN MATHEMATICAL MONTHLY, VOL 69, NO. 1 (1962)- G \& Sconsidered the problem of matching several students to several colleges, according to preferences of each, where the colleges each had a specific quota.
- An instance of "insta bility": there are two students a and β who are matched to colleges A and B, resp., but β prefers A to B and A prefers β to a
- A matching of students to colleges is considered "unstable" if there is a ny instance of insta bility. It is called "sta ble" otherwise.
- Can we always find a matching that is stable?

GALE \& SHAPLEY

College Admissions and the Sta bility of Ma miage

- Remarka bly, sta bility is alwa ys a chieva ble, no matter the preferences of students/ colleges!
> G \& S showed this by actually describing an algorithm (GS) that found a specific stable matching.
- To simplify the a nalysis, they initia lly changed the situation: n students and n colleges, each with a quota of 1.
> Like "ma miages"!
> "students" = "men", "c olleges" = "women"
- We will retum to the original question later, but this is more fun.
- Here, an "unstable matching" means that there is some man a and some woman A that prefereach other to their assigned match.

GALE \& SHAPLEY

College Admissions and the Sta bility of Ma miage

Example 1. The following is the "ranking matrix" of three men, α, β, and γ, and three women, A, B, and C.

	A	B	C
$\boldsymbol{\alpha}$	1,3	2,2	3,1
β	3,1	1,3	2,2
$\boldsymbol{\gamma}$	2,2	3,1	1,3

The first number of each pair in the matrix gives the ranking of women by the men, the second number is the ranking of the men by the women. Thus, α ranks A first, B second, C third, while A ranks β first, γ second, and α third, etc.

1. What if there is a man and a woman that prefereach other best? What must be true in any matching that hopes to achieve stability?
2. What if the preference lists for the men and woman are all the same?

SOME THOUG HTEXPERIM ENTS

- Men propose to women simulta neously in "rounds."
- In round 1, each man proposesto histop woman.
- Each woma n evaluates her proposals (if a ny), a nd a c cepts the best, rejecting all others. These women are now "engaged."
- In round 2, each rejected man now proposes (simulta neously) to his sec ond choic e; his first choic e didn't work out.
- Each woman evaluates her proposals, even if currently engaged, a nd accepts the best, breaking an enga gement if nec essary.
- Rounds continue so long as there are still rejected men left to propose, or equivalently until each woman has received a proposal.
- Once each woman is engaged, the mass wedding takes place!

GS "DEFERRED-ACC EPTANC E" OR "PROPOSAL"ALG ORITHM

1. It alwaysterminates, in fact in at most $(n-1)(n-1)+1$ rounds. Why?
2. What about the average/mean/expected number of rounds?
3. It deliversa stable matching. Why?
4. Clearly, men and women can exchange roles, and the women could propose instead. The GS algorithm is "proposer optimal" in the sense that the proposing group simulta neously do as good as each can in any stable matching. Why?
5. It is "proposee floptimal" in the sense that the group being proposed to simulta neously do as badly as each can in any sta ble matching. Why?

SOME FACTS ABOUTHE GSALG ORITHM (AND SOME HOMEWORK)

Example 2. The ranking matrix is the following.

A	B	C	D	
		1,3	2,3	3,2

There is only the one stable set of marriages indicated by the circled entries in the matrix. Note that in this situation no one can get his or her first choice if stability is to be achieved.

- How can we modify the GS algonithm with quotas for colleges that are larger than 1 ?

BACK TO STUDENTS/COLEG ES

- Stable Polygamy (multiple wives/husbands)?
- Stable "Roommates" (same gender)?
- Let's look more closely at this one.

OTHER APPLCATIONS TO THE "STABILTY OF MARRIAGE"?

- Suppose there are 4 girls (A, B, C, and D) that need to room together in pairs.
- Suppose A ranks B best, BranksC best, C ranks A best, and all three rank D worst. What will ha ppen? Do D's rankings matter?

A "STABLE ROOMMATES" PROBLEM

'THE READER WHO HAS FOLO WED US THIS FAR HAS DOUBTLESS NOTIC ED A CERTAIN TREND IN OUR DISC USSION. IN MAKING THE SPEC IALASSUM PTIO NS NEEDED IN ORDER TO ANALYZZ OUR PROBLEM MATHEMA TIC ALIY, WE NECESSARILY MOVED FURTHER A WAY FROM THE ORIG INALCOHEGE ADMISSIO N QUESTION, AND EVENTUALLY IN DISC USSING THE MARRIAG EPROBLEM, WE ABANDONED REALTY ALTO GEIHER AND ENTERED THE WORLD OF MATHEMATICAL MAKE-BELIEVE. THE PRAC TIC AL-MINDED READER MAY RIGHTFULY ASK WHETHER ANY C ONTRIBUIION HAS BEEN MADETOWARD AN ACTUALSOLUTON OF THE ORIG INALPROBLEM. EVEN A ROUG H ANSWER TO THIS Q UESTION WO ULD REQ UIRE G OING INTO MATIERS WHIC H ARE NO NMATHEMA TIC AL, AND SUC H DISC USSION WOULD BE OUTOF PLACEIN A J OURNAL OF MATHEMATICS. ITIS OUR OPINION, HOWEVER, THATSOME OF THE IDEASINTRODUC ED HERE MIG HTUSEFULLY BE APPLED TO CERTAIN PHASESOFTHEADMISSIONS PROBLEM."
\sim GALE \& SHAPLEY

Alfred Nobel 2012
Alvin E. Roth, Lloyd S. Shapley

Share this: \boldsymbol{f} 아 $+\sqrt{35}$ ㅁ
The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012

Alvin E. Roth
Prize share: $1 / 2$
 Lloyd S. Shapley Prize share: $1 / 2$

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 was awarded jointly to Alvin E. Roth and Lloyd S. Shapley "for the theory of stable allocations and the practice of market design"

- Loyd Shapley had laid the foundation in the abstract realm, starting with his joint work with David Gale in the 1950s and 1960s.
- Alvin Roth had realized, starting in the 1980s, that Shapley's continued work could be adapted and a pplied in a broad range of practical scenarios, including stable assignments of:
- new doctors to hospitals (residencies, NRMP);
- students to schools (school choice); and
- human organs for transplant to recipients.

GALE \& SHAPLEY WERE RIG HT!

- Consider the preference lists to be (uniformly) random, in the n men n women situation.
- Each collection of preference lists (how many?) is called an "instance of the stable ma miage problem."
- Let S be the number of stable matchings in the random instance of the stable maniage problem.
- Know: $\operatorname{Pr}(S \geq 1)=1$.
- What about the expected value of S, E[S]? Can this be computed? If so, is E[S] indic a tive of a likely value for S ?

PROBABILTY, ANYONE?

- Donald Knuth (1976) found an integral formula for E[S].
- Knuth (1978) produced a problem instance that had $2^{\text {n/2 }}$ stable matchings.
- Robert Iving and Paul Leather (1986) extended Knuth's exa mple, and algorithmic ally found problem instances with more than $2^{\text {n }}$ sta ble matchings.
- Knuth extended the work of Iving and Leather, and showed that their algonithm produced problem instances with at least $2.28^{\text {n }}$ stable matchings.
- Open Problem: Is Ivving-Leather's problem insta nce best possible?

FACTS ABOUT"S"

- Meanwhile, in 1972 Mc Vitie and Wilson had found a sequential version of the GSalgorithm, where men propose one-at-a-time.
- In 1990, Knuth, Motwani and Pittel extended the sequential GS algorithm in such a way that it delivered all possible stable husbands for any given women, and used this to show that with probability tending to 1 the number of those stable husbands is roughly 0.5 In n .
- Thus, with high proba bility, $\mathrm{S} \geq 0.5 \ln \mathrm{n}$. (!!)
- But later (1992) Boris Pittel showed that, actually, $S \geq(n / \ln n)^{1 / 2}$ with high probability.
- Can we do better? That is, can we show that S is even larger with high probability?

FACTS ABOUT"S"

- Boris Pittel (1986) showed that E[S] ~e ${ }^{-1} n$ In n by using Knuth's formula for E[S]. This suggests (but does not prove) that most instances of the stable ma miage problem have lots of sta ble matchings.
- To prove that the (asymptotic) value of E[S] is actually a likely value, Craig Lennon and Boris Pittel (2008) managed to show that $\mathrm{E}\left[\mathrm{S}^{2}\right] \sim\left(\mathrm{e}^{-2}+0.5 \mathrm{e}^{-3}\right) \mathrm{n}^{2} \mathrm{In}^{2} \mathrm{n}$.
- The combination of E[S] and E[S2] imply (Cantelli's inequality) that at least 84\% of sta ble ma miage problem instances have cn In n sta ble matchings!

FACTS ABOUT"S"

- Here, assume that there are n people of the same gender, each with their own preference list (having ranked everyone but themselves from best-to-worst). How many?
- Each collection of preference lists represents an "instance of the stable roommates problem."
- Fora (uniformly) random problem instance, let R be the number of sta ble matc hings.
- Know: $\operatorname{Pr}(R \geq 1)<1$, in contrast with S.
- A problem instance x is said to be "solvable" if $R(x) \geq 1$, so $\operatorname{Pr}($ random problem instance x is solvable $)=\operatorname{Pr}(R \geq 1)$.

WHATABOUT"STABLE ROOMMATES"?

- $c n^{-1 / 2} \leq \operatorname{Pr}(\mathrm{R} \geq 1) \leq \mathrm{e}^{1 / 2 / 2=0.82436 \ldots}$
- Inving and Pittel
- E[R] $\sim e^{1 / 2}=1.64872 \ldots$ (Pittel)
- Conjecture (Mertens, 2005):
, $\operatorname{Pr}(\mathrm{R} \geq 1) \sim \mathrm{c} \mathrm{n}^{-1 / 4}$
- $\operatorname{Pr}(S \geq 1)=1$
- GS a lgorithm
, E[S] ~ $e^{-1} n \ln n$ (Pittel)
- ... a nd this is close to a likely value (Lennon a nd Pittel)

"R" VERSUS "S" SUMMARY

- WONDERFUL reference:
- Dan Gusfield \& Robert W. Irving, The Sta ble Ma niage Problem:

Structure a nd Algo rithms. The MITPress, C a mbridge, Ma ssa c husetts, 1989.

THANK YOU!

