4,427 research outputs found

    Soliton-dynamical approach to a noisy Ginzburg-Landau model

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy Ginzburg-Landau equation based on a canonical phase space formulation. The transition pathways are characterized by nucleation and subsequent propagation of domain walls or solitons. We also evaluate the Arrhenius factor in terms of an associated action and find good agreement with recent numerical optimization studies.Comment: 4 pages (revtex4), 3 figures (eps

    Soft Fermi Surfaces and Breakdown of Fermi Liquid Behavior

    Full text link
    Electron-electron interactions can induce Fermi surface deformations which break the point-group symmetry of the lattice structure of the system. In the vicinity of such a "Pomeranchuk instability" the Fermi surface is easily deformed by anisotropic perturbations, and exhibits enhanced collective fluctuations. We show that critical Fermi surface fluctuations near a d-wave Pomeranchuk instability in two dimensions lead to large anisotropic decay rates for single-particle excitations, which destroy Fermi liquid behavior over the whole surface except at the Brillouin zone diagonal.Comment: 12 pages, 2 figures, revised version as publishe

    Noisy regression and classification with continuous multilayer networks

    Full text link
    We investigate zero temperature Gibbs learning for two classes of unrealizable rules which play an important role in practical applications of multilayer neural networks with differentiable activation functions: classification problems and noisy regression problems. Considering one step of replica symmetry breaking, we surprisingly find that for sufficiently large training sets the stable state is replica symmetric even though the target rule is unrealizable. Further, the classification problem is shown to be formally equivalent to the noisy regression problem.Comment: 7 pages, including 2 figure

    Ionisation by quantised electromagnetic fields: The photoelectric effect

    Full text link
    In this paper we explain the photoelectric effect in a variant of the standard model of non relativistic quantum electrodynamics, which is in some aspects more closely related to the physical picture, than the one studied in [BKZ]: Now we can apply our results to an electron with more than one bound state and to a larger class of electron-photon interactions. We will specify a situation, where ionisation probability in second order is a weighted sum of single photon terms. Furthermore we will see, that Einstein's equality Ekin=hν−△E>0E_{kin}=h\nu-\bigtriangleup E>0 for the maximal kinetic energy EkinE_{kin} of the electron, energy hνh\nu of the photon and ionisation gap △E\bigtriangleup E is the crucial condition for these single photon terms to be nonzero.Comment: 59 pages, LATEX2

    A Hierarchically-Organized Phase Diagram near a Quantum Critical Point in URu2Si2

    Get PDF
    A comprehensive transport study, as a function of both temperature and magnetic field in continuous magnetic fields up to 45 T reveals that URu2Si2 possesses all the essential hallmarks of quantum criticality at temperatures above 5.5 K and fields around 38 T, but then collapses into multiple low temperature phases in a hierarchically-organized phase diagram as the temperature is reduced. Although certain generic features of the phase diagram are very similar to those in the cuprates and heavy fermion superconductors, the existence of multiple ordered hysteretic phases near the field-tuned quantum critical point is presently unique to URu2Si2. This finding suggests the existence of many competing order parameters separated by small energy difference in URu2Si2.Comment: 6 pages, twocolum texts, 3 coloured figure included, submitted to PR

    Reconstructing the Hopfield network as an inverse Ising problem

    Full text link
    We test four fast mean field type algorithms on Hopfield networks as an inverse Ising problem. The equilibrium behavior of Hopfield networks is simulated through Glauber dynamics. In the low temperature regime, the simulated annealing technique is adopted. Although performances of these network reconstruction algorithms on the simulated network of spiking neurons are extensively studied recently, the analysis of Hopfield networks is lacking so far. For the Hopfield network, we found that, in the retrieval phase favored when the network wants to memory one of stored patterns, all the reconstruction algorithms fail to extract interactions within a desired accuracy, and the same failure occurs in the spin glass phase where spurious minima show up, while in the paramagnetic phase, albeit unfavored during the retrieval dynamics, the algorithms work well to reconstruct the network itself. This implies that, as a inverse problem, the paramagnetic phase is conversely useful for reconstructing the network while the retrieval phase loses all the information about interactions in the network except for the case where only one pattern is stored. The performances of algorithms are studied with respect to the system size, memory load and temperature, sample-to-sample fluctuations are also considered.Comment: 8 pages, 3 figure

    Entropy and typical properties of Nash equilibria in two-player games

    Full text link
    We use techniques from the statistical mechanics of disordered systems to analyse the properties of Nash equilibria of bimatrix games with large random payoff matrices. By means of an annealed bound, we calculate their number and analyse the properties of typical Nash equilibria, which are exponentially dominant in number. We find that a randomly chosen equilibrium realizes almost always equal payoffs to either player. This value and the fraction of strategies played at an equilibrium point are calculated as a function of the correlation between the two payoff matrices. The picture is complemented by the calculation of the properties of Nash equilibria in pure strategies.Comment: 6 pages, was "Self averaging of Nash equilibria in two player games", main section rewritten, some new results, for additional information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    Analysis of ensemble learning using simple perceptrons based on online learning theory

    Full text link
    Ensemble learning of KK nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning and AdaTron learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is ``maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.Comment: 30 pages, 17 figure

    Thermodynamic picture of the glassy state

    Full text link
    A picture for thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second part, the approach connects the response of macroscopic observables to a field change with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized non-equilibrium way.Comment: Proceedings of the Conference "Unifying Concepts in Glass Physics", ICTP, Trieste, 15 - 18 September 199

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments
    • …
    corecore