91 research outputs found

    Up to 40 % reduction of the GaAs band gap energy via strain engineering in core/shell nanowires

    Full text link
    The great possibilities for strain engineering in core/shell nanowires have been explored as an alternative route to tailor the properties of binary III-V semiconductors without changing their chemical composition. In particular, we demonstrate that the GaAs core in GaAs/In(x)Ga(1-x)As or GaAs/In(x)Al(1-x)As core/shell nanowires can sustain unusually large misfit strains that would have been impossible in conventional thin-film heterostructures. The built-in strain in the core can be regulated via the composition and the thickness of the shell. Thick enough shells become almost strain-free, whereas the thin core undergoes a predominantly-hydrostatic tensile strain, which causes the reduction of the GaAs band gap energy. For the highest strain of 7 % in this work (obtained for x=0.54), a remarkable reduction of the band gap by 40 % was achieved in agreement with theoretical calculations. Such strong modulation of its electronic properties renders GaAs suitable for near-infrared nano-photonics and presumably high electron mobility nano-transistors.Comment: 12 pages, 4 figure

    Differential Calculi on Associative Algebras and Integrable Systems

    Full text link
    After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a "symmetry" of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S. Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics, 202

    Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifolds

    Get PDF
    Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.Comment: 49 page

    The myogenic transcriptional network

    Get PDF
    Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program

    A setting for higher order differential equations fields and higher order Lagrange and Finsler spaces

    Full text link
    We use the Fr\"olicher-Nijenhuis formalism to reformulate the inverse problem of the calculus of variations for a system of differential equations of order 2k in terms of a semi-basic 1-form of order k. Within this general context, we use the homogeneity proposed by Crampin and Saunders in [14] to formulate and discuss the projective metrizability problem for higher order differential equation fields. We provide necessary and sufficient conditions for higher order projectivpre-e metrizability in terms of homogeneous semi-basic 1-forms. Such a semi-basic 1-form is the Poincar\'e-Cartan 1-form of a higher order Finsler function, while the potential of such semi-basic 1-form is a higher order Finsler function.Comment: final, pre-published versio

    Extended 2D myotube culture recapitulates postnatal fibre type plasticity

    Get PDF
    Background: The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types. Results: Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo. Conclusions: Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression

    Expression of the myosin heavy chain IIB gene in porcine skeletal muscle: the role of the CArG-box promoter response element

    Get PDF
    Due to its similarity to humans, the pig is increasingly being considered as a good animal model for studying a range of human diseases. Despite their physiological similarities, differential expression of the myosin heavy chain (MyHC) IIB gene (MYH4) exists in the skeletal muscles of these species, which is associated with a different muscle phenotype. The expression of different MyHC isoforms is a critical determinant of the contractile and metabolic characteristics of the muscle fibre. We aimed to elucidate whether a genomic mechanism was responsible for the drastically different expression of MYH4 between pigs and humans, thus improving our understanding of the pig as a model for human skeletal muscle research. We utilized approximately 1 kb of the MYH4 promoter from a domestic pig and a human (which do and do not express MYH4, respectively) to elucidate the role of the promoter sequence in regulating the high expression of MYH4 in porcine skeletal muscle. We identified a 3 bp genomic difference within the proximal CArG and Ebox region of the MYH4 promoter of pigs and humans that dictates the differential activity of these promoters during myogenesis. Subtle species-specific genomic differences within the CArG-box region caused differential protein-DNA interactions at this site and is likely accountable for the differential MYH4 promoter activity between pigs and humans. We propose that the genomic differences identified herein explain the differential activity of the MYH4 promoter of pigs and humans, which may contribute to the differential expression patterns displayed in these otherwise physiologically similar mammals. Further, we report that both the pig and human MYH4 promoters can be induced by MyoD over- expression, but the capacity to activate the MYH4 promoter is largely influenced by the 3 bp difference located within the CArG-box region of the proximal MYH4 promoter

    Histology of the Pharyngeal Constrictor Muscle in 22q11.2 Deletion Syndrome and Non-Syndromic Children with Velopharyngeal Insufficiency

    Get PDF
    Plastic surgeons aim to correct velopharyngeal insufficiency manifest by hypernasal speech with a velopharyngoplasty. The functional outcome has been reported to be worse in patients with 22q11.2 deletion syndrome than in patients without the syndrome. A possible explanation is the hypotonia that is often present as part of the syndrome. To confirm a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome, specimens of the pharyngeal constrictor muscle were taken from children with and without the syndrome. Histologic properties were compared between the groups. Specimens from the two groups did not differ regarding the presence of increased perimysial or endomysial space, fiber grouping by size or type, internalized nuclei, the percentage type I fibers, or the diameters of type I and type II fibers. In conclusion, a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome could not be confirmed
    corecore