After an introduction to some aspects of bidifferential calculus on
associative algebras, we focus on the notion of a "symmetry" of a generalized
zero curvature equation and derive Backlund and (forward, backward and binary)
Darboux transformations from it. We also recall a matrix version of the binary
Darboux transformation and, inspired by the so-called Cauchy matrix approach,
present an infinite system of equations solved by it. Finally, we sketch recent
work on a deformation of the matrix binary Darboux transformation in
bidifferential calculus, leading to a treatment of integrable equations with
sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S.
Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics,
202