9,407 research outputs found

    Time series of high resolution spectra of SN 2014J observed with the TIGRE telescope

    Full text link
    We present a time series of high resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS echelle spectrograph installed at the 1.2 m TIGRE telescope. We present a series of 33 spectra with a resolution of R = 20, 000, which covers the important bright phases in the evolution of SN 2014J during the period from January 24 to April 1 of 2014. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14,000 km/s on January 24. The Ca II infrared triplet feature shows a high velocity component with expansion velocities of > 20, 000 km/s during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 A as well as K I at 7664 and 7698 A. Furthermore, we confirm several Diffuse Interstellar Bands, at wavelengths of 6196, 6283, 6376, 6379 and 6613 A and give their measured equivalent widths.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    3D model evolution of a leak based on GPR image interpretations

    Full text link
    This paper presents some aspects of the time propagation of underground water leakage in controlled laboratory conditions using a drilled polyvinyl chloride (PVC) pipe and interpreting ground penetrating radar (GPR) images. GPR pre-processed images are interpreted for easy identification and extraction of surfaces and volumes of water leakage. Finally, the temporal evolution of a water leak is shown using 3D models based on interpretation of GPR images. Water volumes obtained using this approach can be easily observed by personnel who lack highly specialized training in the analysis of raw data. The results of this study are promising and can help develop techniques to validate non-destructive models for the identification, distribution, and prediction of water leaks in water supply systems using GPR.Part of this work has been developed under the support of an FPI (Formacion de Personal Investigador)-UPV (Universitat Politecnica de Valencia) scholarship granted to the second author by the Programa de Ayudas de Investigacion y Desarrollo (PAID) of the Universitat Politecnica de Valencia, and the support of Fundacion Carolina PhD, within its short stances scholarship program for the first author. The use of English in this paper has been revised by John Rawlins.Ocana-Levario, S.; Ayala Cabrera, D.; Izquierdo Sebastián, J.; Pérez García, R. (2015). 3D model evolution of a leak based on GPR image interpretations. Water Science and Technology: Water Supply. 15(6):1312-1319. doi:10.2166/ws.2015.093S1312131915

    The ELAIS Deep X-ray Survey

    Full text link
    We present initial follow-up results of the ELAIS Deep X-ray Survey which is being undertaken with the Chandra and XMM-Newton Observatories. 235 X-ray sources are detected in our two 75 ks ACIS-I observations in the well-studied ELAIS N1 and N2 areas. 90% of the X-ray sources are identified optically to R=26 with a median magnitude of R=24. We show that objects which are unresolved optically (i.e. quasars) follow a correlation between their optical and X-ray fluxes, whereas galaxies do not. We also find that the quasars with fainter optical counterparts have harder X-ray spectra, consistent with absorption at both wavebands. Initial spectroscopic follow-up has revealed a large fraction of high-luminosity Type 2 quasars. The prospects for studying the evolution of the host galaxies of X-ray selected Type 2 AGN are considered.Comment: 9 pages, 5 figures, To appear in Proceedings of XXI Moriond Conference: "Galaxy Clusters and the High Redshift Universe Observed in X-rays", edited by D. Neumann, F.Durret, & J. Tran Thanh Va

    The Waveform Digitiser of the Double Chooz Experiment: Performance and Quantisation Effects on PhotoMultiplier Tube Signals

    Full text link
    We present the waveform digitiser used in the Double Chooz experiment. We describe the hardware and the custom-built firmware specifically developed for the experiment. The performance of the device is tested with regards to digitising low light level signals from photomultiplier tubes and measuring pulse charge. This highlights the role of quantisation effects and leads to some general recommendations on the design and use of waveform digitisers.Comment: 14 pages, 8 figures, accepted for publication in JINS

    Influence of nanostructured ceria support on platinum nanoparticles for methanol electrooxidation in alkaline media

    Get PDF
    The catalytic activity of platinum (Pt) nanoparticles (NPs) towards methanol electrooxidation in alkaline media was demonstrated to be dependent on their interactions with their nanostructured ceria support. Ceria nanorods (NRs) with diameters of 5 to 10 nm and lengths of 15 to 50 nm as well as ceria NPs with diameters of 2 to 6 nm were applied as supports for similarly sized Pt NPs with diameters of 2 to 5 nm. Cyclic voltammetry data showed that Pt NPs supported on ceria NPs exhibited a 2-to-5-fold higher catalytic current density versus ceria NRs. X-ray photoelectron spectroscopic data indicated that Pt NPs deposited onto ceria NRs were disproportionally composed of oxidized species (Pt2+, Pt4+ and Pt–O–M) rather than Pt0 while Pt NPs on ceria NPs mainly consisted of Pt0. Stronger metal-support interactions between Pt NPs and ceria NRs are postulated to induce preferential oxidation of Pt NPs and consequently decrease the catalytic sites and overall activity

    THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS

    Get PDF
    Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or
    corecore