622 research outputs found

    Interference of a Tonks-Girardeau Gas on a Ring

    Full text link
    We study the quantum dynamics of a one-dimensional gas of impenetrable bosons on a ring, and investigate the interference that results when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Large visibility interference fringes arise when the wavevector of the optical dipole grating is larger than the effective Fermi wavevector of the initial gas.Comment: 7 pages, 3 figure

    Ground state properties of a one-dimensional condensate of hard core bosons in a harmonic trap

    Full text link
    The exact N-particle ground state wave function for a one-dimensional condensate of hard core bosons in a harmonic trap is employed to obtain accurate numerical results for the one-particle density matrix, occupation number distribution of the natural orbitals, and momentum distribution. Our results show that the occupation of the lowest orbital varies as N^{0.59}, in contrast to N^{0.5} for a spatially uniform system, and N for a true BEC.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Low-density, one-dimensional quantum gases in a split trap

    Full text link
    We investigate degenerate quantum gases in one dimension trapped in a harmonic potential that is split in the centre by a pointlike potential. Since the single particle eigenfunctions of such a system are known for all strengths of the central potential, the dynamics for non-interacting fermionic gases and low-density, strongly interacting bosonic gases can be investigated exactly using the Fermi-Bose mapping theorem. We calculate the exact many-particle ground-state wave-functions for both particle species, investigate soliton-like solutions, and compare the bosonic system to the well-known physics of Bose gases described by the Gross-Pitaevskii equation. We also address the experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure

    Stability of spinor Fermi gases in tight waveguides

    Full text link
    The two and three-body correlation functions of the ground state of an optically trapped ultracold spin-1/2 Fermi gas (SFG) in a tight waveguide (1D regime) are calculated in the plane of even and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a ``Lieb-Liniger-Heisenberg'' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas (FTG), a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG.Comment: 5 pages, 6 figure

    Pfaffian-like ground state for 3-body-hard-core bosons in 1D lattices

    Full text link
    We propose a Pfaffian-like Ansatz for the ground state of bosons subject to 3-body infinite repulsive interactions in a 1D lattice. Our Ansatz consists of the symmetrization over all possible ways of distributing the particles in two identical Tonks-Girardeau gases. We support the quality of our Ansatz with numerical calculations and propose an experimental scheme based on mixtures of bosonic atoms and molecules in 1D optical lattices in which this Pfaffian-like state could be realized. Our findings may open the way for the creation of non-abelian anyons in 1D systems

    Measurement of one-particle correlations and momentum distributions for trapped 1D gases

    Full text link
    van Hove's theory of scattering of probe particles by a macroscopic target is generalized so as to relate the differential cross section for atomic ejection via stimulated Raman transitions to one-particle momentum-time correlations and momentum distributions of 1D trapped gases. This method is well suited to probing the longitudinal momentum distributions of 1D gases in situ, and examples are given for bosonic and fermionic atoms.Comment: 4 pages, 2 .eps figure

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio

    Many-body solitons in a one-dimensional condensate of hard core bosons

    Full text link
    A mapping theorem leading to exact many-body dynamics of impenetrable bosons in one dimension reveals dark and gray soliton-like structures in a toroidal trap which is phase-imprinted. On long time scales revivals appear that are beyond the usual mean-field theory

    Temperature dependence of density profiles for a cloud of non-interacting fermions moving inside a harmonic trap in one dimension

    Full text link
    We extend to finite temperature a Green's function method that was previously proposed to evaluate ground-state properties of mesoscopic clouds of non-interacting fermions moving under harmonic confinement in one dimension. By calculations of the particle and kinetic energy density profiles we illustrate the role of thermal excitations in smoothing out the quantum shell structure of the cloud and in spreading the particle spill-out from quantum tunnel at the edges. We also discuss the approach of the exact density profiles to the predictions of a semiclassical model often used in the theory of confined atomic gases at finite temperature.Comment: 7 pages, 4 figure

    Bose-Einstein Condensation in Geometrically Deformed Tubes

    Full text link
    We show that Bose-Einstein condensate can be created in quasi-one-dimensional systems in a purely geometrical way, namely by bending or other suitable deformation of a tube.Comment: RevTex, 4pages, no figure
    corecore