3,012 research outputs found

    Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data

    Get PDF
    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft\u27s attitude is unknown.;In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm.;A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry Pi computer. It was mounted on a tripod, used to target stars with the scope and measure the rotation between them using the IMU. The raw measurements were then post-processed using the MOAR algorithm, and attitude estimates were determined. Two different constellations---the Big Dipper and Orion---were used for experimental data collection. The results suggest that the novel method of estimating gyro bias independently from attitude in this document is credible for use onboard a spacecraft

    Hybrid Projectile Body Angle Estimation for Selectable Range Increase

    Get PDF
    A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. A simple launch timer was first envisioned to control the transformation point in order to achieve maximum distance. However, this timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It was also necessary to filter out noise from a simulated inertial measurement unit (IMU), GPS receiver, and magnetometer. An Extended Kalman Filter (EKF) was chosen to estimate the Euler angles, position and velocity of the HP while an algorithm determined when to deploy the wings. A parametric study was done to verify the optimum deployment condition using a Simulink aerodynamic model. Because range is directly related to launch angle, various launch angles were simulated in the model. By fixing the glide slope angle to -10° as a deployment condition for all launch angles, the range differed only by a maximum of 6.1% from the maximum possible range. Based on these findings, the body angle deployment condition provides the most flexible option to maintain maximum distance without the need of reprogramming. Position and velocity estimates were also determined from the EKF using the GPS measurements. Simulations showed that the EKF estimates exhibited low root mean squared error values, corresponding to less than 3% of the total position values. Because the HP was in flight for less than a minute in this experiment, the drift encountered was acceptable

    A search for gravitational lensing in 38 X-ray selected clusters of galaxies

    Get PDF
    We present the results of a CCD imaging survey for gravitational lensing in a sample of 38 X-ray-selected clusters of galaxies. Our sample consists of the most X-ray luminous (Lx>= 2x10^{44} erg s^{-1}) clusters selected from the Einstein Observatory Extended Medium Sensitivity Survey (EMSS) that are observable from Mauna Kea (dec > -40deg). The sample spans a redshift range of 0.15 0.5. CCD images of the clusters were obtained in excellent seeing. There is evidence of strong gravitational lensing in the form of giant arcs (length l > 8'', axis ratio l/w > 10) in 8 of the 38 clusters. Two additional clusters contain shorter arclets, and 6 more clusters contain candidate arcs that require follow-up observations to confirm their lensing origin. Since the survey does not have a uniform surface brightness limit we do not draw any conclusion based on the statistics of the arcs found. We note, however, that 60% (3 of 5) of the clusters with Lx > 10^{45} erg s^{-1}, and none of the 15 clusters with Lx < 4x10^{44} erg s^{-1} contain giant arcs, thereby confirming that high X-ray luminosity does identify the most massive systems, and thus X-ray selection is the preferred method for finding true, rich clusters at intermediate and high redshifts. The observed geometry of the arcs, most of which are thin, have large axis ratios (l/w > 10), and are aligned orthogonal to the optical major axes of the clusters, indicate the cluster core mass density profiles must be compact (steeper than isothermal). In several cases, however, there is also some evidence, in the form of possible radial arcs, for density profiles with finite core radii.Comment: Latex file, 17 pages, 7 jpeg figures, to be published in Astronomy and Astrophysics Supplement

    The ROSAT North Ecliptic Pole Survey: The Optical Identifications

    Full text link
    The X-ray data around the North Ecliptic Pole (NEP) of the ROSAT All Sky Survey have been used to construct a contiguous area survey consisting of a sample of 445 individual X-ray sources above a flux of ~2x10^-14 erg cm^-2 s^-1 in the 0.5-2.0 keV energy band. The NEP survey is centered at RA (2000) = 18h 00m, DEC(2000) = +66deg 33arcmin and covers a region of 80.7 sq. deg at a moderate Galactic latitude of b = 29.8deg. Hence, the NEP survey is as deep and covers a comparable solid angle to the ROSAT serendipitous surveys, but is also contiguous. We have identified 99.6% of the sources and determined redshifts for the extragalactic objects. In this paper we present the optical identifications of the NEP catalog of X-ray sources including basic X-ray data and properties of the sources. We also describe with some detail the optical identification procedure. The classification of the optical counterparts to the NEP sources is very similar to that of previous surveys, in particular the Einstein Extended Medium Sensitivity Survey (EMSS). The main constituents of the catalog are active galactic nuclei (~49%), either type 1 or type 2 according to the broadness of their permitted emission lines. Stellar counterparts are the second most common identification class (~34%). Clusters and groups of galaxies comprise 14%, and BL Lacertae objects 2%. One non-AGN galaxy, and one planetary nebula have also been found. The NEP catalog of X-ray sources is a homogeneous sample of astronomical objects featuring complete optical identification.Comment: Accepted for publication in the ApJS; 33 pages including 12 postscript figures and 3 tables; uses emulateapj.sty. On-line source catalog at http://www.eso.org/~cmullis/research/nep-catalog.htm

    Marangoni shocks in unobstructed soap-film flows

    Full text link
    It is widely thought that in steady, gravity-driven, unobstructed soap-film flows, the velocity increases monotonically downstream. Here we show experimentally that the velocity increases, peaks, drops abruptly, then lessens gradually downstream. We argue theoretically and verify experimentally that the abrupt drop in velocity corresponds to a Marangoni shock, a type of shock related to the elasticity of the film. Marangoni shocks induce locally intense turbulent fluctuations and may help elucidate the mechanisms that produce two-dimensional turbulence away from boundaries.Comment: 4 pages, 5 figures, published in PR

    The 3D soft X-ray cluster-AGN cross-correlation function in the ROSAT NEP survey

    Full text link
    X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters.The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a >3sigma significant clustering signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3 h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, that the bias factor of AGN is similar to that of galaxies.Comment: 4 pages, 2 figure, proceedings of the Conference "At the edge of the Universe", Sintra Portugal, October 2006. To be published on the Astronomical Society of the Pacific Conference Series (ASPCS

    Associative discrimination in Britain and in the European Union: a still too elastic concept?

    Get PDF
    The concept of associative discrimination, as more recently "shaped" by the European Court of Justice (Attridge Law v Coleman), is put under a attack in this contribution, for its possibly too large "perimeter" and undefined "border".The analysis goes on to assess how the "associative" discrimination, also because unlegislated so far, may affect the employee-employer relationship and the ability of businesses to create job.Finally, the contributions offers glimpses of comparative analysis between Britain and a Continental counterpart in this matter (Italy), to infer that the Italian system might have implemented the concept at stake (associative discrimination) in a too limited way, as opposed to the British approach. The concept of associative discrimination, as more recently "shaped" by the European Court of Justice (Attridge Law v Coleman), is put under a attack in this contribution, for its possibly too large "perimeter" and undefined "border".The analysis goes on to assess how the "associative" discrimination, also because unlegislated so far, may affect the employee-employer relationship and the ability of businesses to create job.Finally, the contributions offers glimpses of comparative analysis between Britain and a Continental counterpart in this matter (Italy), to infer that the Italian system might have implemented the concept at stake (associative discrimination) in a too limited way, as opposed to the British approach

    Mass accretion rates of clusters of galaxies: CIRS and HeCS

    Full text link
    We use a new spherical accretion recipe tested on N-body simulations to measure the observed mass accretion rate (MAR) of 129 clusters in the Cluster Infall Regions in the Sloan Digital Sky Survey (CIRS) and in the Hectospec Cluster Survey (HeCS). The observed clusters cover the redshift range of 0.01<z<0.300.01<z<0.30 and the mass range of ∼1014−1015h−1 M⊙\sim 10^{14}-10^{15} {h^{-1}~\rm{M_\odot}}. Based on three-dimensional mass profiles of simulated clusters reaching beyond the virial radius, our recipe returns MARs that agree with MARs based on merger trees. We adopt this recipe to estimate the MAR of real clusters based on measurements of the mass profile out to ∼3R200\sim 3R_{200}. We use the caustic method to measure the mass profiles to these large radii. We demonstrate the validity of our estimates by applying the same approach to a set of mock redshift surveys of a sample of 2000 simulated clusters with a median mass of M200=1014h−1 M⊙M_{200}= 10^{14} {h^{-1}~\rm{M_{\odot}}} as well as a sample of 50 simulated clusters with a median mass of M200=1015h−1 M⊙M_{200}= 10^{15} {h^{-1}~\rm{M_{\odot}}}: the median MARs based on the caustic mass profiles of the simulated clusters are unbiased and agree within 19%19\% with the median MARs based on the real mass profile of the clusters. The MAR of the CIRS and HeCS clusters increases with the mass and the redshift of the accreting cluster, which is in excellent agreement with the growth of clusters in the Λ\LambdaCDM model.Comment: 25 pages, 19 figures, 7 table
    • …
    corecore