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ABSTRACT 

Hybrid Projectile Body Angle Estimation for Selectable Range Increase  
 

Christopher J. Gioia 
 
 

A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is 
currently being researched at West Virginia University. A simple launch timer was first 
envisioned to control the transformation point in order to achieve maximum distance. However, 
this timer would need to be reprogrammed for any distance less than maximum range due to the 
nominal time to deployment varying with launch angle. A method was sought for automatic 
wing deployment that would not require reprogramming the round. A body angle estimation 
system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is 
properly oriented for the designed glide slope angle. It was also necessary to filter out noise from 
a simulated inertial measurement unit (IMU), GPS receiver, and magnetometer. An Extended 
Kalman Filter (EKF) was chosen to estimate the Euler angles, position and velocity of the HP 
while an algorithm determined when to deploy the wings. A parametric study was done to verify 
the optimum deployment condition using a Simulink aerodynamic model. Because range is 
directly related to launch angle, various launch angles were simulated in the model. By fixing the 
glide slope angle to -10° as a deployment condition for all launch angles, the range differed only 
by a maximum of 6.1% from the maximum possible range. Based on these findings, the body 
angle deployment condition provides the most flexible option to maintain maximum distance 
without the need of reprogramming. Position and velocity estimates were also determined from 
the EKF using the GPS measurements. Simulations showed that the EKF estimates exhibited low 
root mean squared error values, corresponding to less than 3% of the total position values. 
Because the HP was in flight for less than a minute in this experiment, the drift encountered was 
acceptable.   
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1. Problem Statement 

Traditional mortar rounds are launched from a tube and follow a parabolic trajectory toward their 

target without control. A Hybrid Projectile (HP), seen in Figure 1, is a tube launched munition 

that begins its flight as a simple projectile and at a predetermined point in flight; wings stowed in 

the body are deployed, transforming it into a glider (Manole 2012.) This enables the round to 

travel farther than a standard projectile. A simple launch timer was first envisioned to control 

transformation point for maximum distance. An optimal deployment time was calculated using 

various launch angle simulations for extended range. This method however, does not always 

extend range to its maximum because the deployment time depends on the launch angle. The 

maximum range, in turn, is affected by the launch angle. This means that in order to achieve a 

desired range, the timer would need to be reprogrammed before launch.  

 

 

Figure 1: WVU HP 60mm CAD (Wilhelm 2012) 
 

Due to this need, a method was sought for automatic wing deployment that would not require 

reprogramming the round when launching at various angles. A system was envisioned to 

estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented 
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for the designed glide slope angle, or the angle relative to the horizontal that the projectile 

maintains after wing deployment. An inertial measurement unit (IMU) could be used to estimate 

accelerations and body angle rates, and the estimation system provided a method of converting 

the body angle rates to useable body angle measurements. An extended Kalman filter (EKF) was 

used to estimate body angles and position of the HP, and also filter out noise from simulated 

IMU measurements, while an algorithm determined when to deploy the wings. An aerodynamic 

model was constructed to simulate the performance of the HP. In the next few sections, the 

model is broken down and each section is explained in detail.  

 

2. Projectile Flight Dynamics 

Hybrid projectiles, defined in Manole 2012, are designed to exhibit dynamics of both 

conventional projectiles and a fixed winged aircraft. The first portion of the flight is accurately 

represented by projectile motion of a rigid body with a fixed mass, and its equations. At some 

predetermined instance, wings stowed in the body of the hybrid projectile are deployed and its 

motion takes on the characteristics of a fixed winged aircraft. The body dynamics change and 

Euler angles must be defined to fully represent the equations of motion, position and attitude of 

the hybrid projectile. Ballistics can also be used to describe the flight and will be addressed in 

this section as well.   

 

2.1. Euler Angles 

In order to effectively transition between projectile and hybrid dynamics, the body angles, most 

importantly pitch, must be measured. Body angles are the orientation of a rigid object in space 

relative to three axes. They can be measured using either Euler angles or Quaternions. Both have 
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their place in aerodynamics, and each of their advantages will be explored. In the figure below, a 

simple rotation with respect to the y-axis is shown. Proper definition of the orientation depends 

on the order of the rotations. For instance, rotating about the x-axis then the y-axis will not yield 

the same orientation as rotating about the y-axis then the x-axis.   

 

Figure 2: Rotation example 
 

Euler angles are three independent angles that describe the orientation of some object with 

respect to some defined reference frame. Euler angles involve three successive rotations about 

three axes that are not, in general, perpendicular. By performing these three successive rotations 

in the proper sequence, a coordinate system can reach any orientation.  

 

These rotations can be represented by matrices. Given the initial coordinate system XiYiZi, the 

angle of rotation about the current Zi axis is represented by φi, and the transformation matrix 

given by this rotation is: 

 

ଵܣ
௜ ൌ 	 ቎

௜߮ݏ݋ܿ െ߮݊݅ݏ௜ 0
௜߮݊݅ݏ ௜߮ݏ݋ܿ 0
0 0 1

቏ (2-1) 

 

Original Configuration, XYZ and XiYiZi axes 
overlap 

 
After 30 deg rotation with respect to Y-

axis 

X, Xi 

Y, Yi

Z, Zi 

Xi 

Yi
Zi
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The coordinate system XiYiZi is then rotated about the current Xi axis by an angle θi, and the 

change of the orientation of the coordinate system can be described by the matrix: 

 

ଶܣ
௜ ൌ ൥

1 0 0
0 ௜ߠݏ݋ܿ െߠ݊݅ݏ௜

0 ௜ߠ݊݅ݏ ௜ߠݏ݋ܿ
൩ (2-2) 

 

Finally, the XiYiZi coordinate system is rotated about the Yi axis by an angle ψi and the change 

in orientation is represented by: 

 

ଷܣ
௜ ൌ 	 ቎

௜߰ݏ݋ܿ 0 െ߰݊݅ݏ௜

0 1 0
௜߰݊݅ݏ 0 ௜߰ݏ݋ܿ

቏ (2-3) 

 

The overall transformation can be represented by the product of all three, and the final 

orientation of the coordinate system XiYiZi can be represented by: 

 

௜ܣ ൌ ଵܣ
௜ ଶܣ

௜ ଷܣ
௜  (2-4) 

 

Equation 2-4 can be expanded in terms of φi, θi and ψi and written as: 

 

௜ܣ ൌ ቎
௜߰ݏ݋௜ܿ߮ݏ݋ܿ	 ൅ ௜ߠ݊݅ݏ௜߰݊݅ݏ௜߮݊݅ݏ െܿߠݏ݋௜߮݊݅ݏ௜ ௜ߠ݊݅ݏ௜߮݊݅ݏ௜߰ݏ݋ܿ െ ௜߰݊݅ݏ௜߮ݏ݋ܿ

௜߮݊݅ݏ௜߰ݏ݋ܿ	 െ ௜ߠ݊݅ݏ௜߰݊݅ݏ௜߮ݏ݋ܿ ௜ߠݏ݋௜ܿ߮ݏ݋ܿ െ߮݊݅ݏ௜߰݊݅ݏ௜ െ ௜ߠ݊݅ݏ௜߰ݏ݋௜ܿ߮ݏ݋ܿ

௜߰݊݅ݏ௜ߠݏ݋ܿ ௜ߠ݊݅ݏ ௜ߠݏ݋௜ܿ߰ݏ݋ܿ
቏ (2-5) 
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The three angles used, φ, θ, and ψ, are known as the Euler angles. The matrix Ai above can be 

constructed using these angles and three rotations about any axis. This section covers a Z-X-Y 

rotation, but the transformation matrix is not limited to any combination or any order. The 

process of representing three rotations is the same as listed above. (Shabana 1994) There is one 

drawback to using Euler angles: gimbal lock. Gimbal lock occurs when a set of rotations causes 

two axes to align, and one rotation has no effect. (Lepetit 2005) This singularity can result in ill-

conditioned optimization problems. The use of quaternions helps to avoid this problem, but the 

risks of a singularity occurring were low in this project. Therefore, quaternions were not used. 

 

2.2. Direction Cosine Matrix 

The Direction Cosine Matrix (DCM) allows for a vector that is defined in the body (local) 

coordinate system to be converted to the global coordinate system. The multiplication of all three 

individual transformation matrices shown in matrix Ai above is the DCM.  The nine elements of 

the matrix Ai above can be used to represent the direction cosines of the Xi, Yi and Zi axes in 

terms of φ, θ, and ψ. This means that the elements of columns 1, 2 and 3 are the direction cosines 

of the Xi, Yi, and Zi axes respectively. It appears that all nine elements are independent 

parameters, but there are really only three independent ones. Because of the six orthogonality (or 

normalization) conditions, the three column vectors are mutually perpendicular and the 

magnitude of each column vector is equal to one. (Premerlani 2009)   

 

Using an example, the DCM of a Zi-Xi-Zi rotation would look like the matrix Bi show below: 
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௜ܤ ൌ 	 ቎
௜߮ݏ݋௜ܿ߰ݏ݋ܿ െ ௜߮݊݅ݏ௜߰݊݅ݏ௜ߠݏ݋ܿ െܿ߮ݏ݋௜߰݊݅ݏ௜ െ ௜ߠݏ݋௜ܿ߰ݏ݋௜ܿ߮݊݅ݏ ௜߮ݏ݋௜ܿߠ݊݅ݏ

௜߮݊݅ݏ௜߰ݏ݋ܿ ൅ ௜ߠݏ݋௜ܿ߰݊݅ݏ௜߮ݏ݋ܿ െ߮݊݅ݏ௜߰݊݅ݏ௜ ൅ ௜ߠݏ݋௜ܿ߰ݏ݋௜ܿ߮ݏ݋ܿ െߠ݊݅ݏ௜ܿ߮ݏ݋௜

௜߰ݏ݋௜ܿߠ݊݅ݏ ௜߰ݏ݋௜ܿߠ݊݅ݏ ௜ߠݏ݋ܿ
቏ (2-6) 

 

To get the Euler angles using direction cosines, the last row and column can be used by: 

 

௜ߠ ൌ cosିଵ  ଷଷ (2-7)ܤ

߮௜ ൌ cosିଵሺ
ଷଶܤ
௜ߠ݊݅ݏ

ሻ (2-8) 

߰௜ ൌ cosିଵሺ
ଶଷܤ
௜ߠ݊݅ݏ

ሻ (2-9) 

  

Several rotation matrices can be multiplied together and get a rotation matrix that is equivalent to 

applying all of the rotations in succession. Because rotation matrices depend on the order of 

rotations, the order of the matrix multiplication matters as well. That is to say, matrix 

multiplication is not commutative and it must be left multiplied when converting from one 

orientation to a final orientation. (Shabana 1994) 

 

2.3. Projectile Motion 

Projectile motion, as seen in Walker (2008), in its simplest sense is motion in a two-dimensional 

plane that moves in the vertical plane with some initial velocity ݒԦ௢ and its acceleration is always 

the free fall acceleration	 Ԧ݃, acting downward. In projectile motion air resistance is neglected. The 

horizontal and vertical components of projectile motion are independent of each other. Thus, the 

initial velocity of a projectile can be written as 

 (2-10) 
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Ԧ௢ݒ ൌ ௢ೣݒ ଓ̂ ൅ ௢೤ݒ ଔ ̂. 

 

The horizontal and vertical components ݒ௢ೣ and ݒ௢೤	 can be found if the launch angle ߠ௢between 

 :Ԧ௢ and the positive x-direction is knownݒ

 

௢ೣݒ ൌ ݏ݋௢ܿݒ	 ௢ andߠ ௢೤ݒ ൌ ݊݅ݏ௢ݒ  ௢. (2-11)ߠ

 

This enables the two-dimensional motion to be broken down into two one-dimensional motions, 

one for the horizontal (with zero acceleration) and one for the vertical motion (with constant 

downward acceleration.) Because there is no acceleration in the horizontal direction, the 

horizontal component of the projectile’s velocity,	ݒ௫, does not change throughout the entire 

motion. The projectile’s horizontal displacement ݔ െ  ,௢ at any time, tݔ ௢ from an initial positionݔ

can be expressed by 

 

ݔ െ ௢ݔ ൌ  (12-2) ݐ௢ೣݒ

 

Since		ݒ௢ೣ ൌ  ,௢ߠ	ݏ݋௢ܿݒ	

 

ݔ െ ௢ݔ ൌ ሺݒ௢ܿݏ݋  (13-2) ݐ௢ሻߠ

 

The vertical motion is the motion of a particle in free fall with a constant acceleration	ሬ݃ሬሬԦ, so the 

vertical displacement can be found by: 
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ݕ െ ௢ݕ ൌ ሺݒ௢݊݅ݏ ݐ௢ሻߠ െ
1
2
 ଶ (2-14)ݐ݃

 

Likewise, the vertical velocity can be expressed by the equations: 

 

௬ݒ ൌ ݊݅ݏ௢ݒ ௢ߠ െ  (15-2) ݐ݃

௬ଶݒ ൌ 	 ሺݒ௢݊݅ݏ ௢ሻଶߠ െ 2݃ሺݕ െ  ௢ሻ (2-16)ݕ

 

As seen in Equation 2-15, the vertical velocity components behaves exactly like a projectile 

launched straight up. It starts from initial velocity, and its speed steadily decreases until it stops 

at maximum height. Its direction then reverses and gains speed with time. An equation of the 

projectile’s path, or trajectory, can be found by eliminating t in equations (2-13) and (2-14). 

Assuming ݔ௢ and ݕ௢ to be zero, the equation for the projectile’s path is: 

 

ݕ ൌ ሺߠ݊ܽݐ௢ሻݔ െ
ଶݔ݃

2ሺݒ௢ܿߠݏ݋௢ሻଶ
 (2-17) 

 

It can be noted from equation 2-17 that the motion is parabolic. The horizontal range, R, of a 

projectile is the horizontal distance the projectile has travelled when it returns to its initial height 

and can be expressed as: 

 

ܴ ൌ
௢ଶݒ

݃
 ௢ (2-18)ߠ2݊݅ݏ
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The maximum range for a projectile occurs at a launch angle of 45°. However, equation 2-18 did 

not give the distance travelled for a projectile that lands at a different height than the launch 

height. This analysis also did not include drag forces acting on the projectile, which were 

considered in ballistic analysis. 

 

2.4. Ballistics 

Ballistics provides another approach to analyzing hybrid projectiles. It expands on projectile 

motion analysis to include other factors such as force due to drag, its spin as well as gravity. 

(Carlucci 2008) Carlucci provides a diagram of a more specific projectile motion analysis, by 

expanding on the trajectory of the round, and it can be seen below in Figure 2.   

 

 

Figure 3: Elements of a trajectory as seen in Carlucci 2008 
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It should be noticed that the range (map range) defined above is different from the projectile 

motion range defined in Section 2.3 because it is defined below the height of launch (base of 

trajectory). The range and base of trajectory are important for proper trajectory definition. In this 

thesis, it was assumed that the launch height was negligible since the range is much greater than 

the launch tube height. Another important characteristic seen in Figure 2 is the difference 

between the line of departure and the line of elevation. It is common to assume that the projectile 

exits the barrel along the axis of the barrel, however, due to aerodynamic effects and the 

dynamics of the round this is not truly the case. Later in this thesis, the assumption will be made 

that the round leaves the barrel along the axis of the barrel, but the fact that this does not 

accurately represent a real world launch should be considered when examining the findings in 

later sections.    

 

Exterior ballistic analysis takes into account forces, moments and coefficients acting on the 

projectile. The drag on a projectile is the force exerted on it as it moves through the air. In 

general, two types of drag exist: pressure drag and skin friction drag, which are normal to and 

along the surface of a projectile respectively. The equation for the drag force is defined in terms 

of the drag coefficient, density of the fluid, surface area, and speed which the projectile is 

travelling: 

 

஽ܨ ൌ
1
2
 ஽ (2-19)ܥܣଶܸߩ

    

Lift is defined as the aerodynamic force that acts perpendicular to the velocity vector. This is the 

force that gives an object flight and can be defined as: 
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௅ܨ ൌ
1
2
 ௅ (2-20)ܥܣଶܸߩ

     

These forces are taken into account in the simulation, and how they were used will be explained 

later in Section 5.2. 

 

3. State Acquisition 

It was necessary to measure the states of the hybrid projectile to be used in 3D localization. 

There are various sensors that can be used, but the most applicable are the inertial measurement 

unit (IMU), a Global Positioning System (GPS) receiver, and a magnetometer. Each are 

discussed more in depth below, covering how they work and why they are the most beneficial for 

this project. 

 

3.1. Inertial Measurement Unit 

An IMU consists of a triad of orthogonal accelerometers and rate gyroscopes that are 

continuously updated using a computer to calculate the acceleration and body angle rates of a 

body in space over time. (Gross 2011) By combining linear accelerometers with rate gyro 

measurements it is possible to monitor both the translational and rotational movements and 

completely define the trajectory of a projectile from its origin of motion, also known as dead 

reckoning. (Titterton 2004) 

 

The first type of IMU that was developed was the gimbaled system. (Walchko 2002) The 

accelerometers were mounted on a motorized gimbaled platform which always kept in alignment 
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with the navigation frame. Pickups are located on the outer and inner gimbals which keep track 

of the attitude of the stabilized platform relative to the vehicle on which the INS is mounted. 

There are several factors that make this system undesirable: bearings are non-frictionless, motors 

are not perfect, power is consumed to keep the platform aligned with the navigational frame, cost 

is high due to the need for high quality motors, slip rings and other mechanical parts, and 

recalibration is difficult and requires regular maintenance by certified personnel.  

 

In order to reduce these drawbacks, the Strap-down INS was created. In a strap-down system, 

referenced from Rogers 2003, three accelerometers and three gyroscopes are mounted in 

orthogonal triads and rigidly attached to the vehicle body. Motions sensed by the gyros, i.e.,	߱௜/௕
௕  

are in coordinates fixed to the body. The body referenced accelerometer outputs, f b, are 

transformed from the body to the navigation frame in the navigation computer using the ܥ௕
௞ 

transformation matrix. This method overcomes the problems from the gimbaled system by 

reducing the size, cost, power consumption and complexity of the system, making IMUs ideal 

for this project. 

 

Sources of error, such as bias and drift, present difficulties when using IMUs. These are the most 

devastating effects on accuracy; drift rate for the gyros and the accelerometer bias are small 

offsets that the IMU improperly reads and propagates through the measurements. The bias has a 

quadratic effect on the position derived from the IMU’s accelerometer (݁ݎ݋ݎݎ ൌ ଵ

ଶ
ݏܾܽ݅ ∗  ଶ) andݐ

must be accounted for. The drift rate has a similar and equally substantial impact on the position 

of a system. If a drift is not properly accounted for, the IMU thinks it is rotating and the 

navigation equations will not properly account for gravity. (Rogers 2003) 
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Micro-electrical mechanical system (MEMS) gyroscopes, an example can be seen below in 

Figure 3, are used as part of the IMUs and have many advantages. (Woodman 2007) They are 

light weight, small in size and have a low power consumption to name a few advantages over 

mechanical and optical gyros. MEMS gyros have sources of error that need to be addressed, 

however.  

 

 

Figure 4: Triple Axis Digital Output Gyroscope- ITG-3200 
 

The bias of a rate gyro is the average output from the gyroscope when it is not undergoing any 

rotation. A constant bias error, when integrated, causes an angular error which grows linearly 

with time (݁ݎ݋ݎݎ ൌ ݏܾܽ݅ ∗  Thermo-mechanical white noise will also affect the output of the (.ݐ

gyro sensor at a rate greater than the sampling rate of the sensor. As a result, the samples 

obtained from the sensor are perturbed by a white noise sequence which is simply a sequence of 

non-zero mean uncorrelated random variables. To see what effect the white noise has on the 
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integrated signal, a simple analysis can be done assuming the rectangular rule is used for 

integration. The result of this on the white noise signal, ε, is: 

 

න ሺ߬ሻ݀߬ߝ ൌ ෍ݐߜ ௜ܰ

௡

௜ୀଵ

௧

଴
 (3-1) 

  

where Ni is the ith random variable in the white noise sequence, n is the number of samples 

received from the device during the period and δt is the time between successive samples. 

Calculating the mean, E, and variance, Var, of the equation above yields: 

 

ܧ ቆන ሺ߬ሻ݀߬ߝ
௧

଴
ቇ ൌ ݐߜ ∗ ݊ ∗ ሺܰሻܧ ൌ 0 (3-2) 

ݎܸܽ ቆන ሺ߬ሻ݀߬ߝ
௧

଴
ቇ ൌ ଶݐߜ ∗ ݊ ∗ ሺܰሻݎܸܽ ൌ ݐߜ ∗ ݐ ∗  ଶ (3-3)ߪ

 

Hence, the noise introduces a zero-mean random walk error into the integrated signal, whose 

standard deviation is: 

 

ሻݐఏሺߪ ൌ ߪ ∗ ݐߜ√ ∗  (4-3) ݐ

 

which grows proportionally to the square root of time.  

 

The drift rates and accelerometer biases also tend to change each time the unit is switched on. 

Typically there is a low pass filter used to remove some of this noise before the measurements 
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are used in the navigation equations. (Rogers 2003) Also realistically, there tends to be low pass 

filtering somewhere in the system due to hardware limitation because not everything has infinite 

bandwidth. As explained above, when random noise is filtered, this produces a random walk. 

Again, the integration of this random walk will result in velocity and positions moving at 

different rates during different runs even though the IMU and vehicle are in the same orientation 

and experiencing the same accelerations during each run. In this project the noise experienced 

from the IMU was filtered out through Kalman filtering. An introduction to Kalman filtering can 

be found in Chapter 4, and the specific process of the noise filtering will be explained in Chapter 

6. 

 

3.2. Global Positioning System 

The Global Positioning System (GPS) system utilizes the concept of one-way time of arrival 

(TOA) ranging. (Kaplan 2006) The navigation data from satellites provides the means for the 

receiver to determine the location of the satellite at the time of signal transmission, whereas the 

ranging code enables the user’s receiver to determine the transit time of the signal and thereby 

determine the satellite-to-user range. In order for this to work properly, this technique requires 

that the user receiver also contain a clock. Range information from multiple GPS satellites (at 

least four) provides information that is used to calculate the three-dimensional position of the 

GPS receiver within a Cartesian coordinate system that is within either a rotating frame or an 

inertial frame. (Gross 2011) The common designation of a Cartesian frame that rotates with the 

Earth‘s rotation is Earth-Centered Earth Fixed (ECEF), while an inertial frame is referred to as 

Earth-Centered Inertial (ECI).  
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Since the GPS receiver senses the position and velocity states directly, it does not need 

information about previous states in order to produce a solution. (Theil) The GPS receiver is 

considered an absolute sensor with bounded error in time. This feature gives long operation time 

stability, which a dead reckoning sensor like the IMU does not experience. The drawback is that 

it cannot provide a fast navigation solution, unlike the IMU, because of its low sample rate and 

the requirement that at least 4 GPS signals are available. Therefore, although the advantage of 

being a stand-alone sensor with long operation time stability, it also has associated errors due to 

the path of the satellite signals to the receiver. 

 

Primary GPS error sources consist of measurement noise, propagation delay and non-

synchronous clocks. Of these sources, the largest source of error is clock offset, or bias attributed 

to actual clock bias and ionosphere delays. Specifically, satellite and receiver clock offsets 

directly translate into pseudo range and carrier-phase errors. A GPS signal was simulated in 

Simulink using the model calculated position and velocities and noise was also added to the 

signal. This will be expanded on in Section 5.3.1.2. 

 

3.3. Magnetometer 

Magnetometers are devices that use the Earth’s magnetic field to measure the orientation of a 

body in space. Using this data, the azimuth (heading) and spin rate of an aerial vehicle can be 

determined. Jagadish (2007) outlines how IMU measurements can be coupled with 

magnetometer measurements by using their projections of gravity and magnetic field of the Earth 

on an aerial vehicle to derive its Euler angles.  
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4. State Estimation Methods 

Various methods can be used to estimate the states of a system that are provided by 

measurements. One method is linear Kalman filtering, which as the name suggests can only be 

applied to linear systems. For nonlinear systems, extended Kalman filtering and Unscented 

Kalman filtering can be applied to estimate the states. 

 

4.1. Linear Kalman Filter 

In Kalman 1960, the recursive solution to the discrete data linear filtering problem is introduced. 

The Kalman Filter (KF) has been the subject of extensive research and application, particularly 

in the area of autonomous or assisted navigation (Welch 2006). The KF, commonly employed by 

control engineers and other physical scientists has been successfully used in such diverse areas as 

the processing of signals in aerospace tracking and underwater sonar, and the statistical control 

of quality (Meinhold 1983). As mentioned earlier with IMU and GPS components, noise is a 

factor when measuring the system; Kalman filters provide engineers and scientists with a way to 

reduce or remove the noise. In order to use a KF to remove noise from a signal, the process that 

we are measuring must be able to be described by a linear system (Simon 2001).  

 

The Kalman filter addresses the general problem of trying to estimate the state ݔ ∈ ܴ௡	of a 

discrete time controlled process that is governed by the linear stochastic difference equation 

 

௞ݔ ൌ ௞ିଵݔܣ ൅ ௞ିଵݑܤ ൅  ௞ିଵ (4-1)ݓ

 

With a measurement  
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௞ݖ ൌ ௞ݔܪ ൅  ௞ (4-2)ݒ

 

The random variables ݓ௞ and ݒ௞	represent the process and measurement noise respectively. 

They are assumed to be independent of each other white noise with normal probability 

distributions. 

 

ሻݓሺ݌ ~ ܰሺ0, ܳሻ (4-3) 

ሻݒሺ݌ ~ ܰሺ0, ܴሻ (4-4) 

 

In practice, the process noise covariance Q and measurement noise covariance R matrices might 

change with each time step or measurement.  

 

According to the work of Welch and Bishop, the KF estimates a process by using a form of 

feedback control: the filter estimates the process state at some time and then obtains feedback in 

the form of noisy measurements. As such, the equations for the KF fall into two groups: time 

update equations and measurement update equations. The time update equations are responsible 

for projecting forward in time the current state and error covariance estimates to obtain the a 

priori estimates for the next time step. The measurement update equations are responsible for the 

feedback. The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. The final estimation 

algorithm resembles that of a predictor-corrector algorithm for solving numerical problems as 

shown in Figure 5 below. 
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Time Update  

(“Predict”) 

 

 

 

Figure 5: Kalman filter cycle 
 

The specific equations for the time and measurement updates are: 

 

ො௞ݔ
ି ൌ ො௞ିଵݔܣ ൅  ௞ିଵ (4-5)ݑܤ

௞ܲ
ି ൌ ௞ܣ ௞ܲିଵܣ௞

் ൅ ܳ (4-6) 

௞ܭ ൌ 	 ௞ܲ
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ (4-7) 

ො௞ݔ ൌ ො௞ݔ	
ି ൅ ௞ݖ௞ሺܭ െ ො௞ݔܪ

ିሻ (4-8) 

௞ܲ ൌ ሺܫ െ ሻܪ௞ܭ ௞ܲ
ି (4-9) 

 

The first task during the measurement update is to compute the Kalman gain Kk. The next step is 

to actually measure the process to obtain zk, and then to generate an a posteriori state estimate by 

incorporating the measurement as seen in Equation 4-8. The final step is to obtain an a posteriori 

error covariance estimate, seen in Equation 4-9. After each time and measurement update pair, 

the process is repeated with the previous a posteriori estimates used to project or predict the new 

a priori estimates. This recursive nature is one of the very appealing features of the KF.   

Measurement Update  

(“Correct’) 
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KF Time Update Equations 

(1) Project the state ahead  

(2) Project the error covariance ahead 

ො௞ݔ ൌ ො௞ିଵݔܣ ൅  ௞ିଵݑܤ

௞ܲ
ି ൌ ௞ܣ	 ௞ܲିଵܣ௞

் ൅ 	ܳ 

KF Measurement Update Equations 

(1) Compute the Kalman gain 

(2) Update estimate with measurement zk 

(3) Update the error covariance 

௞ܭ ൌ 	 ௞ܲ
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ 

ො௞ݔ ൌ ො௞ݔ	
ି ൅	ܭ௞ሺݖ௞ െ ො௞ݔܪ

ିሻ 

௞ܲ ൌ ሺܫ െ ሻܪ௞ܭ ௞ܲ
ି 

 

In the actual implementation of the filter, the measurement noise covariance R is usually 

measured prior to operation of the filter. Measuring the measurement error covariance R is 

possible in general because the process is measured while the filter is in operation. Offline 

samples can be taken in order to determine the measurement noise variance. The determination 

of the process noise covariance Q is generally more difficult because it is not always possible to 

directly observe the process being estimated. Superior filter performance can be obtained by 

tuning the filter parameters Q and R. The tuning process can be seen below in Figure 6.    

 

 

Figure 6: Kalman filter Process Flow Chart 
 

It should be noted that under conditions where R and Q are constant, both the estimation error 

covariance Pk and the Kalman gain Kk will stabilize quickly and then remain constant. It is 

frequently the case, however, that the measurement error does not remain constant. Also, the 

Initial estimates for ݔො௞ିଵ and ௞ܲିଵ 



21 
 

process noise Q is sometimes changed dynamically during filter operation, becoming Qk in order 

to adjust for different dynamics. In such cases, Qk might be chosen to account for uncertainty 

about the user’s intentions and uncertainty in the model.   

 

A linear Kalman filter was not used because as the name implies, it can only be applied to linear 

systems. A 6 degree of freedom body in space has equations of motion that are nonlinear. 

According to Ribeiro (2004), if either the system state dynamics or the observation dynamics is 

nonlinear, the conditional probability density functions that provide the minimum mean-square 

estimate are no longer Gaussian. The optimal non-linear filter propagates these non-Gaussian 

functions and evaluates their mean, which represents a high computational burden. In order to 

avoid this pitfall, an Extended Kalman filter was used and is explained in the next section. 

    

4.2. Extended Kalman Filter 

An Extended Kalman filter (EKF) can be used to estimate state values of a nonlinear system, 

such the equations of motion of a flight system (Welch 2006). The EKF works by predicting the 

current states and then comparing them to actual measurements. Based on the error between the 

two, the Kalman gain adjusts the predictions accordingly to match the true values of the state. 

This is done by using the Jacobian matrices of the equations of motion to predict the states and 

measurements from the previous estimate. The basic function of the EKF can be seen in the 

equations below where x represents the states, Q and R represent noise covariance, P represents 

the error covariance, K represents the Kalman gain and A and H represent the Jacobian matrices. 

(Welch 2006) 
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The general process equations that were used for the EKF can be found in Lozano 2010. In order 

to apply the EKF technique to the system, it must first be represented in state space form but a 

set of first-order nonlinear equations: 

 

ሶݔ ൌ ݂ሺݔ,  ሻ (4-10)ݓ

 

Where ݔ ∈ 	Թ௡ denotes the system states vector, ݂ሺݔሻ is the nonlinear function of the states, and 

ݓ ∈ 	Թ௡ represents a zero mean random process. For this project the nonlinear function of the 

states is the set of motion equations of the body angle rates seen above. The matrix of the process 

noise ܳ ∈ 	Թ௡௫௡ is given by 

ො௞ݔ ൌ ݂ሺݔො௞ିଵ,  ௞ିଵሻݑ

௞ܲ
ି ൌ ௞ܣ	 ௞ܲିଵܣ௞

் ൅	 ௞ܹܳ௞ିଵ ௞ܹ
் 

EKF Time Update Equations 

(1) Project the state ahead 

(2) Project the error covariance ahead 

௞ܭ ൌ 	 ௞ܲ
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ 

ො௞ݔ ൌ ො௞ݔ	
ି ൅	ܭ௞ሺݖ௞ െ ො௞ݔܪ

ିሻ 

௞ܲ ൌ ሺܫ െ ሻܪ௞ܭ ௞ܲ
ି 

EKF Measurement Update Equations 

(1) Compute the Kalman gain 

(2) Update estimate with measurement zk 

(3) Update the error covariance 

Initial estimates for ݔො௞ିଵ	and ௞ܲିଵ 

Figure 7: EKF Process Flow Chart
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ܳ ൌ  ሻ (4-11)்ݓݓሺܧ

 

The measurement equation is considered to be a nonlinear function of the states according to 

 

ݖ ൌ ݄ሺݔ,  ሻ (4-12)ݒ

 

Where ݒ ∈ 	Թ௠ is a zero mean random process described by a matrix of measurement noise  

ܴ ∈ 	Թ௠௫௠ as: 

 

ܴ ൌ  ሻ (4-13)்ݒݒሺܧ

 

For systems with discrete-time measurements, it is possible to rewrite the nonlinear equation of 

measurements as:  

 

௞ݖ ൌ ݄ሺݔ௞,  ௞ሻ (4-14)ݒ

 

As the system and measurement equations are nonlinear, then it is necessary to linearize them by 

a first order approach to obtain the dynamic matrix of system F and the measurement matrix H. 

These matrices are related to the nonlinear equations according to 

 

ܨ ൌ
߲݂ሺݔሻ
ݔ݀

 (4-15) 
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ܪ ൌ
߲݄ሺݔሻ
ݔ݀

 (4-16) 

 

The fundamental matrix can be approximated by the Taylor expansion series as follows: 

 

௞ߔ ൌ ܫ ൅ ܨ ௦ܶ ൅
ଶܨ ௦ܶ

ଶ

2!
൅
ଷܨ ௦ܶ

ଷ

3!
൅ ⋯ (4-17) 

 

Where Ts is the sampling time and I is the identity matrix. The series often are approximated by 

the first two terms, that is, 

 

௞ߔ ൎ ܫ ൅ ܨ ௦ܶ (4-18) 

 

For liner systems, the matrix F, H and Φ are linear, but, in the EKF, these matrices can be 

nonlinear. However, the Riccati equations for calculating the Kalman gain are identical to those 

seen in Figure 7. 

 

The EKF will be applied to estimate the Euler angles of the hybrid projectile, while reducing 

noise. Equations of motion are required to measure the states of the hybrid projectile at any 

moment in time. The equations of motion, from Roskam (2003), used to represent the body angle 

rates can be seen below where ߶ is roll, θ is pitch, ߰ is yaw, and p, q and r are the respective 

rates of each body angle.  

߶ሶ ൌ ݌ ൅ ሺݍ ∗ ߶݊݅ݏ ൅ ݎ ∗  (4-19) ߠ݊ܽݐሻ߶ݏ݋ܿ

ሶߠ ൌ ݍ ∗ ߶ݏ݋ܿ െ ݎ ∗  (20-4) ߶݊݅ݏ
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ሶ߰ ൌ ሺݍ ∗ ߶݊݅ݏ ൅ ݎ ∗  (4-21) ߠܿ݁ݏሻ߶ݏ݋ܿ

 

The above equations can be used to represent the state at the next time step in a discretized 

setting by taking the previous state and adding the change of the state at that particular time.  

 

߶௞ାଵ ൌ ߶௞ ൅ ௞݌	 ൅ ሺݍ௞ ∗ ௞߶݊݅ݏ ൅ ݎ ∗  ௞ (4-22)ߠ݊ܽݐ௞ሻ߶ݏ݋ܿ

௞ାଵߠ ൌ ௞ߠ ൅ ௞ݍ ∗ ௞߶ݏ݋ܿ െ ௞ݎ ∗  ௞ (4-23)߶݊݅ݏ

߰௞ାଵ ൌ ߰௞ ൅ ሺݍ௞ ∗ ௞߶݊݅ݏ ൅ ௞ݎ ∗  ௞ (4-24)ߠܿ݁ݏ௞ሻ߶ݏ݋ܿ

 

4.3. Unscented Kalman Filter 

Other types of linear Kalman filters can be used for estimation of nonlinear systems. While the 

EKF is effective as a nonlinear state estimator, the Unscented Kalman filter (UKF) was 

developed as an improvement. In reference to Wan (2000), several flaws are pointed out with the 

EKF and the UKF process is explained in detail. The EKF calculates the prior state estimates 

exactly in the linear case, and can be viewed as an efficient method for analytically propagating a 

Gaussian random variable (GRV) through linear system dynamics. For nonlinear models, 

however, the EKF approximates the optimal terms, where the predictions are approximated as 

simply the function of the prior mean value for estimates. The covariance is determined by 

linearizing the dynamic equations and then determining the posterior covariance matrices 

analytically for the linear system. In other words, in the EKF the state distribution is 

approximated by a GRV which is propagated analytically through the first order linearization of 

the nonlinear system, and the EKF can be viewed as providing “first-order” approximations to 

the optimal terms. These approximations, however, can introduce large errors in the true 
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posterior mean and covariance of the transformed GRV, which may lead to sub-optimal 

performance and sometimes divergence of the filter. The UKF avoids these pitfalls by 

approximating the probability density resulting from the non-linear transformation of a random 

variable instead of approximating the nonlinear functions with a Taylor series expansion. (St-

Pierre 2004) 

 

According to St-Pierre, the approximation is done by evaluating the nonlinear function with a 

minimal setoff carefully chosen sample points. The posterior mean and covariance estimated 

from the sample points are accurate to the second order for any nonlinearity. (Van der Merwe 

2000) If the priori random variable is Gaussian, the posterior mean and covariance are accurate 

to the third order. (Wan, 2000) Wan defines an unscented transformation (UT) as a method for 

calculating statistics or random variable which undergoes a nonlinear transformation. Consider 

propagating a random variable x (dimension L) through a nonlinear function,	ݕ ൌ ݃ሺݔሻ. Assume 

x has a mean ̅ݔ and covariance	 ௫ܲ. To calculate the statistics of y, we form matrix χ of 2ܮ ൅ 1 

sigma vectors ߯௜ (with corresponding weights	 ௜ܹ), according to the following: 

 

߯௢ ൌ  (25-4) ݔ̅

߯௜ ൌ ݔ̅ ൅ ሺඥሺܮ ൅ ߣ ௫ܲሻ௜ ݅ ൌ 1,… ,  (26-4) ܮ

߯௜ ൌ ݔ̅ െ ൫ඥሺܮ ൅ ߣ ௫ܲ൯௜ି௅ ݅ ൌ ܮ ൅ 1,…  (27-4) ܮ2,

௢ܹ
ሺ௠ሻ ൌ ܮሺ/ߣ ൅  ሻ (4-28)ߣ

௢ܹ
ሺ௖ሻ ൌ

ߣ
ܮ ൅ ߣ

൅ ሺ1 െ ଶߙ ൅  ሻ (4-29)ߚ

௜ܹ
ሺ௠ሻ ൌ ௜ܹ

ሺ௖ሻ ൌ ଵ

ሼଶሺ௅ାఒሻሽ
݅ ൌ 1,…  (30-4)   ܮ2,
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Where ߣ ൌ	∝ଶ ሺܮ ൅ ሻߢ െ  is a scaling parameter. Α determines the spread of the sigma points ܮ

around ̅ݔ and is usually set to a small positive value (e.g., 1 e-3). κ is a secondary scaling 

parameter which is usually set to 0, and β is used to incorporate prior knowledge of the 

distribution of x (for Gaussian distributions, ߚ ൌ 2 is optimal). ሺඥሺܮ ൅ ߣ ௫ܲሻ௜ is the ith row of the 

matrix square root. These sigma vectors are propagated through the nonlinear function, 

 

௜ܻ ൌ ݃ሺ߯௜ሻ ݅ ൌ 0,…  (31-4) ܮ2,

  

And the mean and covariance for y are approximated using a weighted sample mean and 

covariance of the posterior sigma points,  

 

തݕ ൎ෍ ௜ܹ
ሺ௠ሻ

௜ܻ

ଶ௅

௜ୀ଴

 (4-32) 

௬ܲ ൎ ෍ ௜ܹ
ሺ௖ሻሼ ௜ܻ െ തሽݕ

ଶ௅

௜ୀ଴

ሼ ௜ܻ െ  തሽ் (4-33)ݕ

  

Note that this method differs substantially from general “sampling” methods (e.g., Monte-Carlo 

methods such as particle filters (de Freitas 1998) which require orders of magnitude more 

sample points in an attempt to propagate an accurate (possibly non-Gaussian) distribution of the 

state. The simple approach taken with the UT results in approximations that are accurate to the 

third order for Gaussian inputs for all nonlinearities. The Unscented Kalman Filter (UKF) is a 

straightforward extension of the UT to the recursive estimation ݔො௞ ൌ ሺ݊݋݅ݐܿ݅݀݁ݎ݌	݂݋	ݔ௞ሻ ൅ ௞ߢ ∗
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ሾݕ௞ െ ሺ݊݋݅ݐܿ݅݀݁ݎ݌	݂݋	ݕ௞ሻሿ, where the state RV is redefined as the concatenation of the original 

state and noise variables: ݔ௞
௔ ൌ ሾݔ௞

௞ݒ்
்݊௞

்ሿ்.  The UT sigma point selection scheme (Equations 

34-39) is applied to this new augmented state RV to calculate the corresponding sigma matrix, 

߯௞
௔	. The equations used by the UKF are: 

 

Initialize with: 

ො௢ݔ ൌ  ଴ሿ (4-34)ݔሾܧ

௢ܲ ൌ ௢ݔሾሺܧ െ ௢ݔො௢ሻሺݔ െ  ො௢ሻ்ሿ (4-35)ݔ

ො௢௔ݔ ൌ ௔ሿݔሾܧ ൌ ሾݔො௢் 0 0ሿ் (4-36) 

௢ܲ
௔ ൌ ௢௔ݔሾሺܧ െ ௢௔ݔො௢௔ሻሺݔ െ ො௢௔ሻ்ሿݔ ൌ ൥

௢ܲ 0 0
0 ௩ܲ 0
0 0 ௡ܲ

൩ (4-37) 

For ݇ ∈ ሼ1,… ,∞ሽ, 

 

Calculate the sigma points: 

 

߯௞ିଵ
௔ ൌ ሾݔො௞ିଵ

௔ ො௞ିଵݔ
௔ േ ඥሺܮ ൅ ሻߣ ௞ܲିଵ

௔  (4-38) 

  

The time update equations are: 

߯௞|௞ିଵ
௫ ൌ ሾ߯௞ିଵܨ

௫ , ߯௞ିଵ
௩ ሿ (4-39) 

ො௞ݔ
ି ൌ෍ ௜ܹ

ሺ௠ሻ߯௜,௞|௞ିଵ
௫

ଶ௅

௜ୀ଴

 (4-40) 

௞ܲ
ି ൌ෍ ௜ܹ

ሺ௖ሻሾ߯௜,௞|௞ିଵ
௫ െ ො௞ݔ

ିሿሾ߯௜,௞|௞ିଵ
௫ െ ො௞ݔ

ିሿ்
ଶ௅

௜ୀ଴

 (4-41) 
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௞ܻ|௞ିଵ ൌ ሾ߯௞|௞ିଵܪ
௫ , ߯௞ିଵ

௡ ሿ (4-42) 

ො௞ݕ
ି ൌ෍ ௜ܹ

ሺ௠ሻ
௜ܻ,௞|௞ିଵ

ଶ௅

௜ୀ଴

 (4-43) 

 

And the measurement update equations are: 

 

௬ܲതೖ௬തೖ ൌ෍ ௜ܹ
ሺ௖ሻሾ ௜ܻ,௞|௞ିଵ

௫ െ ො௞ݕ
ିሿሾ ௜ܻ,௞|௞ିଵ

௫ െ ො௞ݕ
ିሿ்

ଶ௅

௜ୀ଴

 (4-44) 

௫ܲೖ௬ೖ ൌ෍ ௜ܹ
ሺ௖ሻሾ߯௜,௞|௞ିଵ

௫ െ ො௞ݔ
ିሿሾ ௜ܻ,௞|௞ିଵ

௫ െ ො௞ݕ
ିሿ்

ଶ௅

௜ୀ଴

 (4-45) 

ߢ ൌ ௫ܲೖ௬ೖ ௬ܲതೖ௬തೖ
ିଵ  (4-46) 

ො௞ݔ ൌ ො௞ݔ
ି ൅ ௞ݕሺߢ െ ො௞ݕ

ିሻ (4-47) 

௞ܲ ൌ ௞ܲ
ି െ ߢ ௬ܲതೖ௬തೖߢ

் (4-48) 

 

Where	ݔ௔ ൌ ሾ்ݔ	்ݒ	்݊ሿ்,	߯௔ ൌ ሾሺ߯௫ሻ்	ሺ߯௩ሻ்	ሺ߯௡ሻ்ሿ், λ= composite scaling parameter, L= 

dimension of augmented state, ௩ܲ= process noise covariance, ௩ܲ= measurement noise covariance, 

௜ܹ= weights as calculated in Equations 4-25 through 4-30.  In this project a UKF was not used 

because it is too computationally expensive and therefore not as the EFK for the desired 

hardware. According to Van der Merwe, the most computationally expensive operation in the 

UKF corresponds to calculating the new set of sigma points at each time step update. At the 

speed that the hybrid projectile travels, faster computations are more accurate and provide better 

performance. 
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5. Model Construction 

In order to determine whether a body angle was a viable option over the timer deployment 

condition, a model was constructed for simulation. The projectile aerodynamics model was built 

around the ‘6DoF (Euler Angles)’ block, the first option in the 6DoF equations of motion from 

the aerodynamics toolbox in Simulink. It uses aerodynamic coefficients and mass properties to 

simulate flight (Wilhelm 2012). In this thesis, assumptions were made that eliminated two 

degrees of freedom, which will be outlined in Section 5.2. Mass, aerodynamic and physical 

properties of the round first have to be initialized in order for the model to be able to function 

properly. The highest level of the model, seen in Figure 8 output, all of the speed and angle 

simulated data for the HP. The forces and moments acting on the HP were calculated and 

updated with each time step using the ‘Calc Forces’ block. The forces and moments were then 

fed into the 6DoF Euler Angles block, which calculated the states of the HP. The states, earth 

reference frame velocity, earth reference frame position, Euler angles, Direct Cosine Matrix 

(DCM), and body velocity, were then fed into both the ‘Graphing’ and ‘Sensor State Estimation’ 

blocks. The ‘Graphing’ block was used to create graphs, visualize the velocity, trajectory and 

body angles of the HP, and output the Euler angles to the ‘Sensor State Estimation’ block. It also 

checked for a condition that determined when to terminate the simulation. In the ‘Sensor State 

Estimation’ block and IMU is simulated and EKF is applied to the HP. 
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Figure 8: Hybrid Projectile Simulink Model 
 

5.1. Euler Angles 6 DoF Block 

The 6 DoF (Euler Angles) block was used from the aerodynamics toolbox in Simulink. It outputs 

the earth velocity, Ve (m/s), and position, Xe (m), of the HP as well as body angles, the body-to-

Earth Direct Cosine matrix DCMbe, body velocity, Vb (m/s), body angle rates, ω (rad/s), body 

angular accelerations, 
ௗఠ

ௗ௧
 (rad/s2), and body accelerations, Ab (m/s2). Inputs to the block were the 

body forces and moments in the XYZ reference frame, seen below in Figure 9. Positive axis 

orientation can be thought of as “North-East-Down” relative to the HP. It should be noted that 

the reference frame in the figure below is a generalization; the actual reference frame is placed at 

the Center of Gravity (CG).  
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Figure 9:  Reference Frame of the HP (Wilhelm 2012) 
 

The process of calculating all of the states that were listed above can be seen below in the 6 DoF 

subsystem block diagram in Figure 10. This is the default subsystem for the 6DoF (Euler Angles) 

block in Simulink, and cannot be modified. Each subsystem within the block will be described 

and the process of finding each of the outputs will be explained. 

 

 

Figure 10: Subsystem of the 6 DoF Euler Angles block 
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The equations of motion of the 6DoF block that were defined can be found in the ‘Help’ section 

of Simulink and they can be seen below. The applied forces [Fx Fy Fz]
T are in the body-fixed 

frame, and the mass of the body m is assumed constant. 

ത௕ܨ ൌ 	 ቎
௫ܨ
௬ܨ
௭ܨ
቏ ൌ ݉ሺ ሶܸത௕ ൅ ഥ߱ ൈ തܸ௕ሻ 5-1 

തܸ௕ ൌ ൥
௕ݑ
௕ݒ
௕ݓ
൩ , ഥ߱ ൌ ቈ

݌
ݍ
ݎ
቉ 5-2 

 

The applied moments are [L M N]T, and the inertia tensor I is with respect to the origin O. 

ഥ஻ܯ ൌ ൥
ܮ
ܯ
ܰ
൩ ൌ ܫ ሶ߱ഥ ൅ ഥ߱ ൈ ሺܫ ഥ߱ሻ 5-3 

ܫ ൌ ቎െ
௫௫ܫ െܫ௫௬ െܫ௫௭
௬௫ܫ ௬௬ܫ െܫ௬௭
െܫ௫௫ െܫ௫௫ ௫௫ܫ

቏ 5-4 

 

The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change 

of the Euler angles, ൣ ሶ߮ ሶߠ	 	 ሶ߰ ൧
்
can be determined by resolving the Euler angle rates into the body-

fixed coordinate frame.  

ቈ
݌
ݍ
ݎ
቉ ൌ ൥

ሶ߮
0
0
൩ ൅ ൥

1 0 0
0 ߮ݏ݋ܿ ߮݊݅ݏ
0 െ߮݊݅ݏ ߮ݏ݋ܿ

൩ ൥
0
ሶߠ
0
൩ ൅ ൥

1 0 0
0 ߮ݏ݋ܿ ߮݊݅ݏ
0 െ߮݊݅ݏ ߮ݏ݋ܿ

൩ ൥
ߠݏ݋ܿ 0 െߠ݊݅ݏ
0 1 0

ߠ݊݅ݏ 0 ߠݏ݋ܿ
൩ ൥
0
0
ሶ߰
൩

≝ ଵିܬ ቎
ሶ߮
ሶߠ
ሶ߰
቏ 

5-5 

 

Inverting J then gives the required relationship to determine the Euler angle rate vector: 
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቎
ሶ߮
ሶߠ
ሶ߰
቏ ൌ ܬ ቈ

݌
ݍ
ݎ
቉ ൌ ൦

1 ߠ݊ܽݐ߮݊݅ݏ ߠ݊ܽݐ߮ݏ݋ܿ
0 ߮ݏ݋ܿ െ߮݊݅ݏ

0
߮݊݅ݏ
ߠݏ݋ܿ

߮ݏ݋ܿ
ߠݏ݋ܿ

൪ ቈ
݌
ݍ
ݎ
቉ 5-6 

 

The body accelerations, Ab (m/s2), were calculated by dividing the forces by the mass, which was 

extracted from the initializing .m file. From here, the body accelerations were integrated and then 

output as body velocities, Vb (m/s). The body angle rates		݌ሶ , ሶݍ , and	ݎሶ (rad/s2) were calculated in 

the ‘Calculate omega_dot’ block, and the process can be seen below in Figure 11. These rates are 

identical to the 6 DoF output	ௗఠ
ௗ௧

 (rad/s2). Two moments due to the body angle rates were 

calculated by multiplying them by the inertia and rate of change of inertia. These two moments 

were then subtracted from the moments calculated in the ‘Calc Forces’ block. This resultant 

moment vector was divided by the inertia and reshaped to output the body angle accelerations. 

The body angle accelerations were then integrated to determine the body angle rates p, q and r 

(rad/s).  

 

 

Figure 11: Calculate omega_dot subsystem 
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Next, the body-to-Earth DCM (DCMbe) and Euler angles 	߮,  ߰ were calculated in the	and	ߠ

‘Calculate DCM & Euler Angles’ block seen in Figure 12. The basic function of this block was 

to apply the equations of the DCM, using p, q, r,	߮,  ߰. Initial Euler angles were defined in	and	ߠ

the .m file to allow the DCM to be calculated on the first time step. The equations for the DCM 

are: 

ܯܥܦ ൌ ൥
߰ݏ݋ܿ߮ݏ݋ܿ	 ൅ ߠ݊݅ݏ߰݊݅ݏ߮݊݅ݏ െܿ߮݊݅ݏߠݏ݋ ߠ݊݅ݏ߮݊݅ݏ߰ݏ݋ܿ െ ߰݊݅ݏ߮ݏ݋ܿ
߮݊݅ݏ߰ݏ݋ܿ	 െ ߠ݊݅ݏ߰݊݅ݏ߮ݏ݋ܿ ߠݏ݋ܿ߮ݏ݋ܿ െ߰݊݅ݏ߮݊݅ݏ െ ߠ݊݅ݏ߰ݏ݋ܿ߮ݏ݋ܿ

߰݊݅ݏߠݏ݋ܿ ߠ݊݅ݏ ߠݏ݋ܿ߰ݏ݋ܿ
൩ 5-7 

 

 

Figure 12: Calculate DCM & Euler Angles subsystem 
 

The values for p, q and r were fed into the ‘phidot, thetadot, psidot’ block which calculated the 

equations of motion as laid out in (Eq. whatever it is). They were then integrated to obtain the 

Euler angles, and the DCM was calculated and also output. A Selector was used reorder the 

Euler angle vector from phi, theta, psi to facilitate a ZYX rotation. The global velocity vector 

was then found by taking the transpose of the newly found DCM. This was due to the DCM 

being calculated as a ZYX rotation, and the body to global transformation is calculated as an 

XYZ rotation. Once the velocity has been calculated, integration yields the global position 

vector.  
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5.2. Force Calculation Block 

The ‘Calc Forces’ block, seen below in Figure 13, determined the forces and moments that act on 

the body. The inputs to the subsystem are the body velocity vector, body-to-Earth DCM, body 

angles, and global position of the HP. Determining whether or not wings are deployed was the 

most important function of this block. Choosing between body angle or timer deployment 

methods was carried out here, as well as modeling head wind later in the simulation. The CG and 

Center of Pressure (CP) were important aerodynamic properties that were defined in this block; 

they were located at [0 0 0], or the exact center of the body. Air density was defined as 1.2 

kg/m3, which corresponds to a height of 500 ft (152.4m) above sea-level.  

 

Figure 13: Calc Forces block subsystem 
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Forces and moments acting on the HP were found by using the ‘Aerodynamic Forces and 

Moments’ block from the aerodynamics toolbox in Simulink. The inputs to the block were the 

body coefficients, dynamic pressure, center of gravity (CG), and the center of pressure (CP). In 

order to determine the body coefficients, the model first had to determine if the wings deployed. 

Before determining which deployment condition was more effective, the model calculated if the 

wings were deployed using a body angle condition. Wind tunnel test data was collected for both 

conditions of deployed and non-deployed flight (Browning 2011), and the coefficients can be 

seen in Figure 14. However, the data was reference to the nose in this experiment, not the 

traditional chord and span of airplane aerodynamic data.  

 

Figure 14: Aerodynamic Body Coefficients for the Hybrid Projectile (Wilhelm 2012) 
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Figure 15 below shows the process the model took to determine the body coefficients at each 

time step. Dynamic pressure was calculated at each time step, while the CG and CP are fixed 

values that were defined at the beginning of the simulation. Conditions of head wind during 

flight were also tested in this block; however, the effect of head wind will be discussed later in 

the Results section. 

 

 

Figure 15: Body Coefficients Lookup subsystem 
 

In order to determine the aerodynamic forces on the HP, aerodynamic coefficients had to be 

known at each instance during flight. Based on the wind tunnel data from Browning (2011), 

fixed coefficients were used in this study according to the condition of the wings if they were 

stowed or deployed. The Aerodynamic Forces and Moments block, which provided the option to 

define the system axes with respect to wind, stability or body axes, determined which set of 

coefficients had to be used. The ‘body axes’ option was chosen, meaning that the axial (Cx), side 
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(Cy), normal (Cz), roll (Cl), pitch (Cm) and yaw (Cn) coefficients had to be defined. An important 

aerodynamic property involved in these calculations was the incidence angle, α and it was used 

to calculate Cx and Cz using the equations: 

 

௫ܥ ൌ ௅ܥ ∗ sinሺߙሻ ൅ ஽ܥ ∗ cosሺߙሻ 5-8 

௭ܥ ൌ ௅ܥ ∗ cosሺߙሻ ൅ ஽ܥ ∗ sinሺߙሻ 5-9 

     

Where α is in radians and CD and CL were found by: 

 

஽ܥ ൌ ஽ଵܥ ∗ ଶߙ ൅ ஽ଶܥ ∗ ଶߙ ൅  ஽ଷ 5-10ܥ

௅ܥ ൌ ௅ଵܥ ∗ ଶߙ ൅ ௅ଶܥ ∗ ଶߙ ൅  ௅ଷ 5-11ܥ

 

The lift and drag coefficients seen in Equations 5-10 and 5-11 above were determined based on 

the condition if the wings are stowed or deployed. The values for both conditions were: 

 

஽,௪௜௡௚௦ܥ ௦௧௢௪௘ௗ ൌ ൥
0.0018
0

0.152
൩ 5-12 

஽,௪௜௡௚௦ܥ ௗ௘௣௟௢௬௘ௗ ൌ ൥
0.0033
0.0414
0.379

൩ 5-13 

௅,௪௜௡௚௦ܥ ௦௧௢௪௘ௗ ൌ ൥
0
0

0.038
൩ 5-14 

ௗ௘௣௟௢௬௘ௗ	௅,௪௜௡௚௦ܥ ൌ ൥
െ0.0214
0.0876
1.843

൩ 5-15 
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 The pitch coefficient, Cm, was calculated in a similar manner using the equation:  

௠ܥ ൌ ௠భܥ	
∗ ଷߙ ൅ ௠మܥ

∗ ଶߙ ൅ ௠యܥ
∗ ߙ ൅ ௠రܥ

 5-16 

 

where 

௦௧௢௪௘ௗ	௠,௪௜௡௚௦ܥ ൌ ൦

0
0

െ0.25
0

൪ 5-17 

ௗ௘௣௟௢௬௘ௗ	௠,௪௜௡௚௦ܥ ൌ ൦

0.0011
0.01841
െ0.25
0

൪ 5-18 

 

Assumptions were made in the simulation that the round was not subjected to side forces, nor did 

it experience rolling or yawing moments. This was done to simplify the model, since pitch was 

the major body angle being analyzed in this thesis. Because of these assumptions, Cy, Cl, and Cn 

were set equal to zero. Realistically this would not be the case as the HP could leave the barrel of 

the launching tube already in a roll, but such a case will not be addressed in this thesis. The 

overall coefficient vector could then be represented by: 

 

௢௩௘௥௔௟௟ܥ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
௫ܥ
0
௭ܥ
0
௠ܥ
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

 

Based on these coefficients, the performance of the HP can be seen below in Figure 16. 

5-19 
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Figure 16: Trajectories of a HP, with a Wing Deployment Angle of -10°, and a Regular Projectile, both with a 
mass of 1.68 kg and a Launch Velocity of 126 m/s 

 

Once the model was constructed, a simulation was conducted to determine the best conditions 

for maximum extended range. A wing deployment angle of -10° relative to the horizontal was 

used because the HP was designed to have a glide ratio of 10:1. An appropriate launch angle had 

to be determined that allowed maximum range extension to be achieved. A distance map of the 

HP with varying launch and wing deployment angles can be seen in Figure 17. 
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Figure 17: Distance Map for Extended Range of the HP 
 

The region in dark red shows the possible combinations of launch and wing deployment angles 

for optimal extended range. A launch angle of 50° was chosen with the -10° wing deployment 

angle, which corresponded to a 98.77% maximum range extension. There was a region in the 

distance map where at least 98% range extension was achieved, which can be seen in Figure 18. 

This provides flexibility in both the wing deployment angle and launch angle should there need 

to be any changes in the design or manner of operation of the HP.  
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Figure 18: HP Distance Map Confidence Area of 98% (Wilhelm 2012) 
 

Once the forces calculations were defined, the model was able to accurately determine the states 

of the HP. In order to better understand what the model was doing, a graphing block was created 

to visualize body angle, position and velocity values. The ‘Graphing’ block was created as a way 

to visualize the velocity, trajectory and Euler angles of the HP within the model, and can be seen 

below in Figure 19. Plotting velocity, distance and altitude were the main functions of the block 

as well as determining when to end the simulation. Once the altitude calculated by the model 

reached zero, Simulink terminated the simulation.   
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Figure 19: Graphing block subsystem 
 

Its inputs were the Euler angles in radians (rot), global position in m (Xe), body velocity in m/s 

(Vb) and global velocity in m/s (Ve). In order to use a body angle wing deployment condition, the 

pitch had to be known during the HP’s flights. The Euler angles were visualized by converting 

them from radians to degrees as seen in Figure 20. This was used as a benchmark for comparison 

later when the body angles were estimated by the EKF, and also provides an early visualization 

of how the HP is oriented during its flight.  
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Figure 20: Model Calculated Euler Angles of a 1.68 kg HP with a 126 m/s Launch Velocity and Body Trip 
Angle of 10° 

 

The distance and altitude plot can be seen below in Figure 21; however, the altitude signal had to 

be multiplied by -1 due to the reference frame definition of the positive z-direction as down, seen 

in Figure 9. The moment of wing deployment, around 0.3 on the x-axis, can clearly be detected 

on the plot of the HP’s trajectory in the top section of Figure 21, at which time the graph 

becomes almost linear.  
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Figure 21: Altitude (top) and Distance (bottom) of a 1.68 kg HP with a 126 m/s Launch Velocity and Wing 
Deployment Body Angle of 10° 

 

In order to better understand the effect of the HP’s range extension capabilities, the maximum 

distances of a regular projectile and a hybrid projectile were plotted against each other. Launch 

angles between 0 and 90° were then chosen to test the HP’s maximum range extension 

capabilities over regular projectiles, and its performance can be seen below in Figure 22. 
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Figure 22: Maximum Distance vs. Launch Angle for a Hybrid Projectile with Wing Deployment Angle of -10° 
and a Regular Projectile given an Initial Velocity of 126 m/s 

 

According to simulation results, the maximum range is achieved at a launch angle of 56°. The 

maximum distance between both projectile types is the same up until a launch angle of 10° 

because the wing deployment condition is never met. A significant increase in maximum 

distance occurs after a 10° launch angle, showing the effectiveness of the HP’s glide capabilities. 

However, between launch angles of 72° and 73° the performance of the HP declined by 31.4%. 

The performance continued to drop significantly for launch angles greater than 73°, which means 

that at these conditions the wings are not as effective at extending range. 

 

In aerospace systems equations of motion are often expressed in terms of the body velocities. 

They are expressed using the variables u, v, and w (m/s) and can be transformed using the Direct 
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integrated to calculate global position. Body velocities calculated by the model can be seen 

below in Figure 23. Because it was assumed that the HP did not experience any side forces, there 

was no y- velocity, v.  

 

Figure 23: Model Calculated Body Velocities 
 

The model calculated values for position, velocity, acceleration, body angles and body angle 

rates were then used as inputs to a block that simulated sensors on the IMU.  

  

5.3. Sensor State Estimation Block 

The ‘Sensor State Estimation’ block was where the majority of testing was done. Starting with 

the states already calculated from the 6 DoF (Euler Angles) block, the real values of the body 

accelerations and body velocity were stored in variables for comparison. They were then fed into 

the Sensors block, where the data for the IMU and GPS was simulated. Also present in this block 
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was the process involved with the Extended Kalman Filter, and the overall subsystem can be 

seen below in Figure 24.  

 

 

Figure 24: Sensor State Estimation Subsystem 
 

The estimated pitch value from the EKF was also compared to the model simulated value here. 

Error was calculated in the ‘Pitch Error Calculation’ block, and a test to determine the time to 

deployment for various launch angles was conducted in the ‘Time to Deployment Test’ block. 

These results will be discussed later in the thesis. 

 

5.3.1. Sensors Block 

In the ‘Sensors’ block, the outputs of the IMU placed on the HP are simulated and analyzed 

along with GPS and magnetometer signals. Actual hardware was implemented for test purposes 

on the WVU HP, specifically an ArduPilotMega APM2 autopilot (seen in Figure 26) which has a 

built in MPU-6000 IMU (seen below in Figure 25), GPS unit and magnetometer (Anderson 

2010).  
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Figure 25: MPU-6000 IMU (invensense.com) 

 

 

Figure 26: ArdupilotMega hardware (Anderson 2010) 
 

The process flow of the ‘Sensors’ block can be seen below in Figure 27. Simulated outputs from 

the sensors were then able to be used in the EKF state estimation process. 

 

 

Figure 27: Sensors Subsystem 
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The GPS and magnetometer sensors were simulated in Simulink using the model calculated state 

values as a basis. The resultant measurement signals were verified based on available sensor 

specifications. The IMU was simulated using the block in the Aerospace block set, and block 

parameters were chosen using real sensor specs.  

 

5.3.1.1. Inertial Measurement Unit Simulation 

The IMU block’s configuration can be seen below in Table 1; second order dynamics were 

assumed for both the accelerometer and gyroscope in this situation. The inputs to the IMU block 

include body accelerations, Ab (m/s2), body angle rates, ω (rad/s), body angular accelerations,	ௗఠ
ௗ௧

 

(rad/s2) center of gravity, CG (m) and gravity, g (m/s2).  

 

Table 1: IMU Simulation parameters 
Units Metric (MKS) 
IMU Location [-10 0 0] 
Update Rate 0.001 sec 
Accelerometer natural frequency 
(rad/sec) 

190 

Accelerometer damping ratio 1 
Accelerometer scale factor and 
cross coupling 

[1 0 0; 0 1 0; 0 0 1] 

Accelerometer measurement bias [0 0 9.8] 
Gyro natural frequency (rad/sec) 190 
Gyro damping ratio 0.707 
Gyro scale factors and cross-
coupling 

[1 0 0; 0 1 0; 0 0 1] 

Gyro measurement bias [0 0 0] 
G-sensitive bias [0 0 0] 
Noise seeds [23093 23094 23095 23096 23097 23098] 
Noise power [2e-4 2e-4 2e-4 1e-7 1e-7 1e-7] 
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Realistically, the accelerometer and gyroscope upper and lower bounds would have some finite 

bounds, but for the sake of testing they were allowed to go to infinity to avoid clipping. Gravity 

was accounted for in the accelerometer as a bias. The accelerometer was assumed to be critically 

damped; the gyroscope however was assumed to be underdamped. Noise was generated in the 

IMU to simulate real world measurement error using the starting seeds for the random number 

generator for each IMU output seen above in Table 1.  

 

The outputs of the IMU block were the three body accelerations and the three body angle rates 

and they are stored in variables for comparison. In order to verify that the IMU estimated 

accelerations and body angle rates accurately, noise was omitted and the outputs were analyzed; 

they can be seen below in Figure 28.     
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Figure 28: IMU Acceleration (top) and Rotation Rate (bottom) Measurements 
 

Since a real world IMU would have a noisy signal, noise was added and the new signal can be 

seen below in Figure 29. Noise values were added based on selected sensor specifications. 
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Figure 29: IMU Acceleration (top) and Body Angle Rates (bottom) Measurements with noise 
 

5.3.1.2. GPS Simulation 

GPS outputs were simulated by using the model calculated position and velocity signals and 

passing them through a rate transition block where they were discretized at a sampling rate of 10 

Hz. A clock was also discretized so when the GPS data was used by the EKF, it would be able to 

tell when a new measurement was received so the update equations could be used. Gaussian 

noise was added to the signals with a variance of 100 m2 for position and 10 m2/s2 for velocity. 

This method, seen in Figure 30, operated under the assumption that the GPS measurements were 

already converted from geodetic latitude, longitude, and altitude (LLA) to a flat Earth reference 

frame. 
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Figure 30: GPS Simulation 
 

Velocity can be measured directly from GPS receivers by analyzing the relativistic Doppler 

Effect between the receiver and transmitter (Zhang, et al 2006). The Doppler Effect is 

experienced when there is relative motion between the source and observer of a wave signal. For 

a GPS signal, the Doppler Effect can be expressed as (Mirsa and Enge 2001): 

 

௥݂ ൌ ௦݂ሺ1 െ
Ԧሶ௥௦ݎ

ܿ
ሻ 5-20 

  

Where fr is the received frequency, fs is the original frequency of the transmitter, ݎԦ௥௦	is the 

receiver-satellite line of sight vector (LOS), and ݎԦሶ௥௦	is the relative velocity of the receiver-satellite 

LOS vector. With this knowledge the assumption that the model calculated velocities were used 

is justified, and the simulated position and velocity outputs can be seen below in Figure 31. 
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Figure 31: GPS Simulated Position (top) and Velocity (bottom) with Noise 
 

5.3.1.3. Magnetometer Simulation 

Magnetometers measure the strength and direction of magnetic fields, and they can be used to 

provide measurements of a body’s orientation in space. The work of Jagadish, et al (2007) 

outlines various methods of using magnetometer and accelerometer data to find Euler angles. 

The Roll-Pitch-Yaw sequence was chosen because it uses the measurements az, mx, my and mz. 

Other methods use measurements that account for side forces and would not accurately represent 

the Euler angles in this case where side forces are assumed to be zero. The equations used to 

calculate the Euler angles can be seen below, where ‘c’ represents cosine and ‘s’ represents sine. 
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where α is the is the inclination angle of the earth magnetic field (NGDC 2007) and 

 

ܣ ൌ ߙଵܿߠܿ െ  5-26 ߙݏଵܿ߮ଵߠݏ

ܤ ൌ  5-27 ߙݏଵ߮ݏ

 

The rotation angles found from Equations 2-12 through 2-14 are then converted to standard Euler 

angles using the equations below. 

 

ߠ ൌ ଵܿ߰ଵߠݏଵሺܿ߮ଵିݏ െ  ଵሻ 5-28߰ݏଵ߮ݏ

߮ ൌ ܿିଵሺ
ܿ߮ଵܿߠଵ
ߠܿ

ሻ 5-29 

߰ ൌ ܿିଵሺ
ଵܿ߰ଵߠܿ
ߠܿ

ሻ 5-30 
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The equations validated the assumption of using the model calculated Euler angles with added 

noise as magnetometer, and the Simulink modeling can be seen below in Figure 32. 

 

Figure 32: Magnetometer Simulation 
 

After acquiring the sensor data, a method was sought to reduce noise and provide accurate 

estimates of the states; based on the nonlinear nature of the system, the Extended Kalman Filter 

was chosen. 

 

6. Extended Kalman Filter Implementation 

Accurate readings of the states were essential in order for the HP to effectively extend its range. 

However, noise propagating through integration steps provided excessive error. An Extended 

Kalman Filter was used as a method to reduce the noise from the measurements while 

simultaneously estimating the proper states.  

 

The EKF process equations from Lozano (2010) can be seen below: 

 

ሶݔ ൌ ݂ሺݔ,  ሻ 6-1ݓ

ܳ ൌ  ሻ 6-2்ݓݓሺܧ

ݖ ൌ ݄ሺݔ,  ሻ 6-3ݒ
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ܴ ൌ  ሻ 6-4்ݒݒሺܧ

ܨ ൌ
߲݂ሺݔሻ
ݔ߲

 6-5 

ܪ ൌ
߲݄ሺݔሻ
ݔ߲

 6-6 

௞ߔ ൎ ܫ ൅ ܨ ௦ܶ 6-7 

 

where x is the system states vector, f is the nonlinear function of the states, and w is a zero mean 

random process. The process noise matrix is represented by Q in Equation 6-2, and the nonlinear 

measurement function can be seen by Equation 6-3. The measurement noise R, Equation 6-4, is a 

function of a zero-mean random noise process, v. Since the function of the states is nonlinear, it 

was necessary to linearize them using a first-order approach to obtain the dynamic matrix of the 

system F and the measurement matrix H, seen in Equations 6-5 and 6-6. The fundamental matrix 

Φ can be approximated by using a Taylor Series expansion; however, the series is often 

expressed using only the first two terms of the expansion, seen in Equation 6-7, where I is the 

identity matrix and Ts is the sampling time. For both linear and nonlinear systems, the Riccati 

equations for calculating the Kalman gain are identical and can be seen below: 

 

ො௞ݔ
ି ൌ ො௞ିଵݔܣ ൅  ௞ିଵ 6-8ݑܤ

௞ܲ
ି ൌ ௞ܣ ௞ܲିଵܣ௞

் ൅ ܳ 6-9 

௞ܭ ൌ 	 ௞ܲ
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ 6-10 

ො௞ݔ ൌ ො௞ݔ	
ି ൅ ௞ݖ௞ሺܭ െ ො௞ݔܪ

ିሻ 6-11 

௞ܲ ൌ ሺܫ െ ሻܪ௞ܭ ௞ܲ
ି 6-12 
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6.1. State Estimation Process in Matlab 

Simulation of the EKF was done using a Matlab function block within the Simulink model. The 

inputs to the block, seen below in Figure 33, were the IMU inputs (u), the initial state vector 

(x0), initial covariance matrix (P0), EKF sampling time (Ts), GPS measurements (gps), GPS 

clock (gpsTs), and magnetometer measurements (mag.) 

 

Figure 33: EKF Matlab Function Block in Simulink Model 
 

The outputs of the block seen in Figure 33, global position, global velocity and body angles, 

were defined as the state vector within the EKF function block. The prediction of the state vector 

seen below in Equation 6-13 (Gross 2010) was done in the beginning of the algorithm and 

corresponds to Equation 6-8. The subscript k denotes the state at the current time step, x, y, and z 

are the global distance states, Vx, Vy, and Vz are the global velocity states, and φ, ϴ, and ψ are the 

Euler angles of the HP.  
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The next step was to predict the covariance P from Equation 6-9, where F, Equation 6-15, is linearized state relationship matrix and Q 

is the process noise covariance matrix. Q can be measured offline based on sensor error analysis, but was approximated based on the 

work of Gross (2010) in addition to error analysis; it was defined as: 

 

ܳ ൌ ݀݅ܽ݃൫0,0,0, ଶߪ ݂݋ ܽ௫, ଶߪ ݂݋ ܽ௬, ଶߪ ݂݋ ܽ௭, ଶߪ ݂݋ ,݌ ,ݍ	݂݋	ଶߪ ଶߪ ݂݋ ൯ݎ ൌ 

ܳ ൌ ݀݅ܽ݃ሺ0,0,0, 2݁ െ 4, 2݁ െ 4, 1݁ െ 7, 1݁ െ 7, 1݁ െ 7 ሻ 
6-14 
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The update process was only executed when GPS and magnetometer readings were taken. GPS and magnetometer data were compiled 

into a single vector, which became the measurement vector, z seen below in Equation 6-16.    

 

ݖ ൌ ሾீݔ௉ௌ ௉ௌீݕ ௉ௌீݖ ௫ܸಸುೄ ௬ܸಸುೄ ௭ܸಸುೄ ߮௠௔௚ ௠௔௚ߠ ߰௠௔௚ሿ் 6-16 

 

According to Equation 6-3, z can be expressed as a function of the state vector and some noise value, specifically: 

 

ݖ ൌ ݔܪ ൅  17-6 ݒ

.  
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where H, which can be found by taking the derivative of the measurement function z with respect to the state vector, is the observation 

matrix. The next step in the EKF process was calculating the Kalman gain, K, using Equation 6-10. Measurement noise covariance 

values, R, and the observation matrix H were necessary to calculate K, and the equations used to find them were: 

 

ܴ ൌ ݀݅ܽ݃ሺߪଶ	݂݋	ீݔ௉ௌ, ,௉ௌீݕ	݂݋	ଶߪ ଶߪ ݂݋ ,௉ௌீݖ ଶߪ ݂݋ ௫ܸீ௉ௌ, ߪ
ଶ ݂݋ ௬ܸீ௉ௌ

, ଶߪ ݂݋ ௭ܸீ௉ௌ, ߪ
ଶ	݂݋ ߮௠௔௚, ଶߪ ݂݋ ,௠௔௚ߠ ଶߪ ݂݋ ߰௠௔௚ ሻ 

ܴ ൌ ݀݅ܽ݃ሺ0.01, 0.01, 0.01, 1݁ െ 4, 1݁ െ 4, 1݁ െ 4, 1݁ െ 7, 1݁ െ 7, 1݁ െ 7ሻ 
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Residual error between the measurement and the initial prediction was then calculated and multiplied by the Kalman gain K. The 

prediction of the state vector was then updated by adding this value to the previous state vector prediction. This process was repeated 

for each time step.
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6.2. Sampling Time Selection  

For discrete time systems, a sampling time must be defined. In this thesis, there were four 

necessary sampling times that were defined: the sampling times for the IMU, EKF, GPS and 

magnetometer. The hardware that was implemented on the HP, the ArduPilotMega (Anderson 

2010), has a sampling rate of 1 kHz, so that was chosen for use in this thesis. In between 

measurement updates, dead reckoning was used to determine the states of the HP. Dead 

reckoning uses previously known values to predict where the HP is at the current time step. Once 

a new measurement was taken, these predictions were corrected using the EKF process. 

 

A simulation was then done to determine the sensitivity of the EKF to noise based on the 

sampling rate chosen. Figure 34 below shows the relationship between pitch error, EKF 

sampling time and IMU noise power. Noise power is defined in Simulink as the height of the 

power spectral density (PSD). As expected, there is higher error in pitch estimation as the IMU 

noise power becomes larger and the EKF sampling rate gets slower. Since the IMU was the input 

to the EKF, its sampling rate of 1 kHz was assumed to be the sampling rate of the EKF as well. 

This assumption was validated for any noise power, with the highest average pitch error 

magnitude being 0.341° at a noise power of 0.5, which is much larger than the chosen noise 

power of 1e-7. The highest average pitch error magnitude of 9.91° occurred at a sampling time of 

0.5s and a noise power of 0.5.   
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Figure 34: Pitch Error with Varying IMU Noise Power and EKF Sampling Time 
 

Selecting the sampling rates of the measurements, the GPS and magnetometer, was dependent on 

the specifications of the ArduPilotMega; it is available with a GPS module that operates at 5 or 

10 Hz. To ensure the best possible position estimation, a sampling rate of 10 Hz was selected for 

the GPS. The magnetometer that was used on the HP was a Honeywell HMC5883L 3-Axis 

Digital Compass IC, features a sampling rate of 160 Hz. This would allow for the Euler angle 

update equations to run more frequently than the position equations. However, the sampling time 

of the magnetometer was assumed to be equal to that of the GPS so the entire state vector could 

be updated at the same time. Error analysis in the next section validated this procedure. Once 

sampling times and noise had been defined, the EKF was run and the results were compared to 

that of the model calculated values.  
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7. Results 

Once all parameters of the simulation were defined, the effectiveness of the EKF for state 

estimation was tested with noisy IMU, GPS and magnetometer data. In Figure 35 the graphs of 

the model calculated and EKF estimated position values can be seen. Distance and Altitude, x 

and z position respectively, are estimated very well, but the y position estimates deviate from the 

true value of zero. At the end of the simulation, there is a noticeable difference in true and 

estimated z position; this will be expanded on in Section 7.1. Velocity was next to be analyzed, 

and Figure 36 below shows the graphs of the model calculated and EKF estimated velocity. The 

estimated values adhered well to the true values calculated by the model.  Finally, the Euler 

angles were analyzed, and they can be seen below in Figure 37. Overall, the Euler angle 

estimation was the best as shown by the graphs.  
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Figure 35: Model and EKF Calculated Position for a Launch angle of 50°, a Body Angle Deployment of -10° 
and an Initial Velocity of 126 m/s 
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Figure 36: Model and EKF Calculated Velocity for a Launch angle of 50°, a Body Angle Deployment of -10° 
and an Initial Velocity of 126 m/s 
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Figure 37: Model and EKF Calculated Euler Angles for a Launch angle of 50°, a Body Angle Deployment of -
10° and an Initial Velocity of 126 m/s 
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7.1. EKF Error Analysis 

Error between the EKF estimated state and model state vectors was calculated over time and can 

be seen below in Figure 38. From these values, the root mean squared (RMS) error was then 

calculated for each state, as seen in Table 2.  

 

Figure 38: Error between Model and EKF Calculated Position for a Launch Angle of 50°, Wing Deployment 
Angle of -10°, and an Initial Velocity of 126 m/s 
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It should be noted that over time the position error values increase, meaning that the filter 

diverges. According to Perea, et. Al (2007) there is divergence issues in EKFs when the dynamic 

models, measurement models, or both are not linear functions of the state vector. While the 

dynamic model for each state is nonlinear, the position prediction vector is calculated using the 

equations for velocity, allowing velocity error to propagate through a time step. The error plots 

for velocity and Euler angles can be seen in Figure 39 and Figure 40, respectively. 

 

Figure 39: Error between Model and EKF Calculated Velocity for a Launch Angle of 50°, Wing Deployment 
Angle of -10°, and an Initial Velocity of 126 m/s 
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Figure 40: Error between Model and EKF Calculated Euler Angles for a Launch Angle of 50°, Wing 
Deployment Angle of -10°, and an Initial Velocity of 126 m/s 
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7.2. Hold at -10° Wing Deployment Angle 

Since the HP was designed to glide at a -10° angle, it was assumed throughout the project that 

this was the deployment condition that provided maximum extended range. With the distance 

map already outlining HP performance based on launch and body deployment angle in Figure 

17, further tests were run to support this claim. Figure 41 provides a close up of possible launch 

angles and body deployment angles that provide extended range. The dark red region of the 

graph shows the possible combinations of launch angle and body angle deployment criteria 

where maximum range extension was achieved. At a body angle of -10°, performance begins 

around a launch angle of 45°. 

 

Figure 41: Maximum Range Extension based on Varying Launch and Trip Angles 
 

The -10° body angle deployment condition was tested for various launch angle conditions to see 

if it was in fact the best possible angle to deploy the wings at. If another body angle deployment 

condition performed better its range was recorded, and the percent difference between the range 

-45 -40 -35 -30 -25 -20 -15 -10
10

15

20

25

30

35

40

45

50

55

60  

Trip Angle [deg]

 

La
un

ch
 A

ng
le

 [
de

g]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 D
is

ta
nc

e 



74 
 

of the -10° condition and the absolute maximum achievable range was calculated. This can be 

seen below in Figure 42. There are, however, sharp jumps in percent difference for launch angles 

between 10° and around 35° which can be attributed to confidence issues. After this region, there 

is a steady decline in difference between the true maximum and -10° condition’s ranges. The 

difference in range for a launch angle of 50° is only 1%, which shows near optimal performance 

for the criteria used in the model.    

 

Figure 42: Percent Difference between Actual Deployment Angle for Maximum Range and -10° Deployment 
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Figure 43: Range Extension Achieved based on Varying Trip Angle Deployment for a Launch Angle of 50° 
  

Differences between the absolute maximum range extension and that achieved by the assumed 

conditions are small. Based on these tests, the use of a launch angle of 50° and a body angle 
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deployment condition. 
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Figure 44: Maximum Range Extension based on Varying Launch Angle and Timer Deployment 
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Figure 45: Range Extension based on Varying Timer Wing Deployment Values at a Launch Angle of 50°  

 

Figure 46: Range Extension for Pitch Deployment vs. Timer Deployment  
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deployment condition, the HP’s electronics would have to be reprogrammed before being 

launched. The body angle deployment condition does not require reprogramming and can be 

launched at any launch angle, providing control on both the trajectory and maximum distance 

that the HP would travel. Because of these results, the timer deployment condition was not 

chosen over the body angle deployment condition. Another concern was the possibility that a 

strong head wind could push the HP using a timer deployment condition off course significantly 

enough to reduce overall range extension.  

 

7.4. Head Wind Impact 

If the HP were to use a timer deployment method, timing would be critical to ensure that 

maximum range extension was achieved. It was assumed that a strong head wind could possibly 

push the HP’s trajectory enough off course to even push it backwards if the wings deployed at 

the incorrect time. A wind model, seen in Figure 47, was constructed in Simulink by using the 

model calculated DCM and performing matrix multiplication with a wind velocity vector (m/s) 

to transform the wind velocity to the body reference frame. The wind vector was then subtracted 

from the model calculated Vb and the new body velocity was propagated through the HP model. 

 

 

Figure 47: Wind Model Subsystem in 'Calc Forces' Block 
Varying wind speeds were then added to the simulation for both body angle deployment and 

timer deployment conditions. The maximum distance achieved for each wind speed was 

recorded and can be seen below in Figure 48. Winds between 0 and 15 m/s (a high wind, 7 on the 
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Beaufort scale) were tested with negligible difference in maximum range extension between the 

two cases. This shows that non-storm condition winds have little effect on which condition is 

used to deploy the wings of the HP. 

 

Figure 48: Effect of Head Wind on Body Angle and Timer Wing Deployments at 50° Launch Angle and 126 
m/s Initial Velocity 

 

 

8. Conclusion and Future Work 

8.1. Conclusion 

In this thesis, a method of wing deployment of a 60mm Hybrid Projectile was analyzed to 

determine which provided maximum extended range over a regular projectile. A Simulink model 

was constructed to simulate the dynamics of the HP by calculating the forces acting on it at each 

time step using predetermined aerodynamic data. At a predetermined point in flight, wings 

stowed in the body of the HP were deployed. The HP was designed to deploy wings when a pitch 

angle of -10° was achieved for maximum range extension. Simulations showed that there were 



80 
 

other combinations of body angle wing deployment conditions that provided extended range, but 

they did not differ by much in regard to the designed parameters. The use of a timer was initially 

investigated and showed that in situations where the range desired depended on the launch angle 

the timer would need to be reprogrammed to achieve the desired range. Because of this using a 

body angle deployment method was considered, which would not require reprogramming before 

launch. The use of an IMU and a magnetometer would allow body angles to be measured, so it 

was chosen over the use of a timer.  

 

Sensors were simulated by using model determined states with additive noise. Regarding actual 

implementation of hardware, determining Euler angles, velocity and position would be done 

using an Inertial Measurement Unit, a GPS module, and a magnetometer. An estimation process 

had to be used to remove noise, and an Extended Kalman filter was chosen for its ability to 

linearize nonlinear systems. The EKF was simulated using a Matlab function block in the 

Simulink model that ran the update equations whenever measurements were received by the GPS 

and magnetometer. There was minimal difference between the true states and the EKF estimates 

as seen by RMS values of [11.4, 4.9, 11.4]m for position, [2.3, 2.9, 10.1]m/s for velocity and 

[0.4, 0.5, 0.4]deg for Euler angles. However, position was estimated using velocity estimation 

equations and as a result error was propagated. This caused position estimates to diverge over 

time, but because the HP was only airborne for duration of less than a minute, the final error 

values were acceptable for this application of a low-cost expendable projectile.  
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8.2. Future Work 

In addition to the research already conducted in this thesis, the following cases should be 

considered to benefit the HP project and provide more accurate estimation. 

 

 Side forces, rolling and yawing moments should be added to the model, as the HP would 

be subjected to them in a real application.  

 

 EKF divergence that was noticed in this thesis should be investigated to determine if a 

GPS outage would be catastrophic to position and velocity estimation. Studies have been 

done on EKF divergence and should be considered moving forward. Measurement 

hardware drift and bias could also be the cause of divergence in this case.  

 

 The implementation of a UKF could be more beneficial if there is enough computing 

power in the HP hardware. Error values could be reduced and EKF divergence could be 

avoided altogether.  

 

 Real world sensor calibration techniques and launch forces could cause huge initial error 

that the EKF may not be able to recover from. The launch effects on the sensors should 

be studied in order to filter out unwanted disturbances. 

 

 Combine position estimation with control surfaces to add guidance and tracking 

capabilities.   
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Appendix A- Matlab Code 

The following code was written in the Matlab function block that was implemented in the Sensor 
State Estimation/EKF block to. It carried out the EKF update equations when a GPS and 
magnetometer measurement was received.   
 
%The purpose of this function block is to design an EKF to filter 
%the results of the IMU measurements, estimate the state values  
%reduce the effects of noise. 
  
function [pos,vel,roll,pitch,yaw]  = ekf(u,x0,P0,Ts,gps,gpsTs,mag) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Inputs: 
%   u- IMU input 
%   x0- initial state values [acc, bodyang, pos] 
%   P0- initial error covariance matrix 
%   Ts- EKF sample time 
%   gps- gps measurements 
%   gpsTs- gps clock 
%   mag- magnetometer measurements 
  
%Outputs: 
%   pos- estimated position 
%   vel- estimated velocity 
%   roll- estimated roll 
%   pitch- estimated pitch 
%   yaw- estimated yaw 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%--------------------------Initialize parameters--------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m= 1.68;        %mass of projectile in kg 
g= 9.81; 
  
persistent P Q R 
persistent xhat oldt 
persistent p q r 
persistent theta phi psi 
persistent ax ay az 
persistent vxe vye vze 
persistent xe ye ze 
  
if isempty(P)  
    P= P0; 
    Q= diag([0, 0, 0, 7.29e-4, 8.47e-4, 9.36e-4, 1e-7, 1e-7, 1e-7]); 
    R= diag([0.01, 0.01, 0.01, 0.0001, 0.0001, 0.0001, 1e-7 1e-7 1e-7]);  
    xe= x0(1); 
    ye= x0(2); 
    ze= x0(3); 
    vxe= x0(4); 
    vye= x0(5); 
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    vze= x0(6); 
    phi=   x0(7); 
    theta= x0(8); 
    psi=   x0(9);  
    oldt= 0; 
end 
     
%Assign inputs to variables 
ax= u(1); 
ay= u(2); 
az= u(3); 
p  = u(4); 
q  = u(5); 
r  = u(6); 
  
%When GPS measurement comes in 
if gpsTs > oldt 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%---------------------------EKF Filtering Equations------------------------ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%3x3 zero matrix 
C= zeros(3,3); 
  
%Position Jacobian wrt pos 
Pos1= eye(3,3); 
  
%Position Jacobian wrt vel 
Pos2= [Ts, 0, 0; 
       0, Ts, 0; 
       0, 0, Ts]; 
  
%Velocity Jacobian wrt vel 
Vel2= eye(3,3); 
    
%Velocity Jacobian wrt body angles 
Vel3= [ Ts*(( sin(psi)*sin(phi) + cos(psi)*sin(theta)*cos(phi))*ay + 
(sin(psi)*cos(phi)-cos(psi)*sin(theta)*sin(phi))*az),  Ts*(-
cos(psi)*sin(theta)*ax + cos(psi)*cos(theta)*sin(phi)*ay + 
cos(psi)*cos(theta)*cos(phi)*az), Ts*(-sin(psi)*cos(theta)*ax - ( 
cos(psi)*cos(phi) + sin(psi)*sin(theta)*sin(phi))*ay + (cos(psi)*sin(phi) - 
sin(psi)*sin(theta)*cos(phi))*az); 
        Ts*((-cos(psi)*sin(phi) + sin(psi)*sin(theta)*cos(phi))*ay - 
(cos(psi)*cos(phi)+sin(psi)*sin(theta)*sin(phi))*az),  Ts*(-
sin(psi)*sin(theta)*ax + sin(psi)*cos(theta)*sin(phi)*ay + 
sin(psi)*cos(theta)*cos(phi)*az), Ts*( cos(psi)*cos(theta)*ax + (-
sin(psi)*cos(phi) + cos(psi)*sin(theta)*sin(phi))*ay + (sin(psi)*sin(phi) + 
cos(psi)*sin(theta)*cos(phi))*az); 
        Ts*(( cos(theta)*cos(phi))*ay - (cos(theta)*sin(phi))*az)                         
, -Ts*(cos(theta)*ax + sin(theta)*sin(phi)*ay + sin(theta)*cos(phi)*az)                    
,                                                                  0                      
]; 
  
%Body angles portion of the Jacobian 
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Body= [(1+(q*cos(phi)*tan(theta)- r*sin(phi)*tan(theta))*Ts), 
((q*sin(phi)*sec(theta)^2+ r*cos(phi)*sec(theta)^2)*Ts), 0; 
       (-q*sin(phi)-r*cos(phi))*Ts,                                        1,             
0; 
       ((q*cos(phi)- r*sin(phi))*sec(theta))*Ts, ((q*sin(phi) + 
r*cos(phi))*sec(theta)*tan(theta))*Ts,                 1]; 
  
%Final Jacobian matrix 
F= [ Pos1, Pos2,  C ; 
      C  , Vel2, Vel3 
      C  ,   C,  Body]; 
  
%Measurement matrix 
H= eye(9); 
  
  
%Propogate the state and covariance matrices. 
xhat= [ xe + Ts*vxe; 
        ye + Ts*vye; 
        ze - Ts*vze; 
        vxe + Ts*(cos(psi)*cos(theta)*ax + (-sin(psi)*cos(phi) +     
cos(psi)*sin(theta)*sin(phi))*ay + ( sin(psi)*sin(phi) + 
cos(psi)*sin(theta)*cos(phi))*az); 
        vye + Ts*(sin(psi)*cos(theta)*ax + ( cos(psi)*cos(phi) + 
sin(psi)*sin(theta)*sin(phi))*ay + (-cos(psi)*sin(phi) + 
sin(psi)*sin(theta)*cos(phi))*az); 
        vze + Ts*(        -sin(theta)*ax + (                              
cos(theta)*sin(phi))*ay + (               cos(theta)*cos(phi))*az - g           
); 
        phi +   Ts*(p + q*sin(phi)*tan(theta) + r*cos(phi)*tan(theta)); 
        theta + Ts*(q*cos(phi) - r*sin(phi)); 
        psi +   Ts*(q*sin(phi) + r*cos(phi))*sec(theta)]; 
  
%Numerical Error avoidance 
P= F*P*F' + Q; 
  
%Find Kalman Gain 
K= P*H'*inv(H*P*H' + R); 
  
%Calculate the measurement residual 
yhat= xhat; 
meas= [gps; mag]; 
resid= meas - yhat; 
  
%Update state and covariance matrices 
xhat= xhat + K*resid; 
P= (eye(size(K,1))-K*H)*P; 
  
else  
     
    xhat= [ xe + Ts*vxe; 
            ye + Ts*vye; 
            ze - Ts*vze; 
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            vxe + Ts*(cos(psi)*cos(theta)*ax + (-sin(psi)*cos(phi) + 
cos(psi)*sin(theta)*sin(phi))*ay + ( sin(psi)*sin(phi) + 
cos(psi)*sin(theta)*cos(phi))*az); 
            vye + Ts*(sin(psi)*cos(theta)*ax + ( cos(psi)*cos(phi) + 
sin(psi)*sin(theta)*sin(phi))*ay + (-cos(psi)*sin(phi) + 
sin(psi)*sin(theta)*cos(phi))*az); 
            vze + Ts*(        -sin(theta)*ax + (                              
cos(theta)*sin(phi))*ay + (               cos(theta)*cos(phi))*az - g           
); 
            phi +   Ts*(p + q*sin(phi)*tan(theta) + r*cos(phi)*tan(theta)); 
            theta + Ts*(q*cos(phi) - r*sin(phi)); 
            psi +   Ts*(q*sin(phi) + r*cos(phi))*sec(theta)]; 
end 
  
%Update persistent states 
xe= xhat(1); 
ye= xhat(2); 
ze= xhat(3); 
vxe= xhat(4); 
vye= xhat(5); 
vze= xhat(6); 
phi= xhat(7); 
theta= xhat(8); 
psi= xhat(9); 
oldt= gpsTs;                        %Update gps clock value  
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-----------------------------Output Results------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Results for body angles 
roll= 180/pi*phi; 
pitch= 180/pi*theta; 
yaw= 180/pi*psi; 
pos= xhat(1:3); 
vel= xhat(4:6); 
  
end 
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