330 research outputs found

    Large Nc Weinberg-Tomozawa interaction and negative parity s--wave baryon resonances

    Get PDF
    It is shown that in the 70 and 700 SU(6) irreducible spaces, the SU(6) extension of the Weinberg-Tomozawa (WT) s-wave meson-baryon interaction incorporating vector mesons ({\it hep-ph/0505233}) scales as O(Nc0){\cal O}(N_c^0), instead of the well known O(Nc−1){\cal O}(N_c^{-1}) behavior for its SU(3) counterpart. However, the WT interaction behaves as order O(Nc−1){\cal O}(N_c^{-1}) within the 56 and 1134 meson-baryon spaces. Explicit expressions for the WT couplings (eigenvalues) in the irreducible SU(2NFN_F) spaces, for arbitrary NFN_F and NcN_c, are given. This extended interaction is used as a kernel of the Bethe-Salpeter equation, to study the large NcN_c scaling of masses and widths of the lowest--lying negative parity s-wave baryon resonances. Analytical expressions are found in the Nc→∞N_c\to \infty limit, from which it can be deduced that resonance widths and excitation energies (MR−M)(M_R-M) behave as order O(Nc0){\cal O} (N^0_c), in agreement with model independent arguments, and moreover they fall in the 70-plet, as expected in constituent quark models for an orbital excitation. For the 56 and 1134 spaces, excitation energies and widths grow O(Nc1/2){\cal O} (N_c^{1/2}) indicating that such resonances do not survive in the large NcN_c limit. The relation of this latter NcN_c behavior with the existence of exotic components in these resonances is discussed. The interaction comes out repulsive in the 700.Comment: 21 pages, 3 figures, requires wick.sty and young.sty. Subsection added. Conclusions revised. To appear in Physical Review

    Soliton structures in a molecular chain model with saturation

    Full text link
    In the present work, we study, by means of a one-dimensional lattice model, the collective excitations corresponding to intra molecular ones of a chain like proteins. It is shown that such excitations are described by the Nonlinear Schrodinger equation with saturation. The solutions obtained here are the bell solitons, bubbles, kinks and crowdons. Since they belong to different sectors on the parametric space, the bubble condensation could give place to some important changes of face in this kind of nonlinear system. Additionally, it is shown that the limiting velocity of the solitons is the velocity of sound waves corresponding to longitudinal vibrations of molecules.Comment: 12 pages, 4 figure

    Cosmological Effects of Nonlinear Electrodynamics

    Full text link
    It will be shown that a given realization of nonlinear electrodynamics, used as source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way to solve two important problems in cosmology

    Meson-Baryon s-wave Resonances with Strangeness -3

    Get PDF
    Starting from a consistent SU(6) extension of the Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian (Phys. Rev. D74 (2006) 034025), we study the s-wave meson-baryon resonances in the strangeness S=-3 and negative parity sector. Those resonances are generated by solving the Bethe-Salpeter equation with the WT interaction used as kernel. The considered mesons are those of the 35-SU(6)-plet, which includes the pseudoscalar (PS) octet of pions and the vector (V) nonet of the rho meson. For baryons we consider the 56-SU(6)-plet, made of the 1/2+ octet of the nucleon and the 3/2+ decuplet of the Delta. Quantum numbers I(J^P)=0(3/2^-) are suggested for the experimental resonances Omega*(2250)- and Omega*(2380)-. Among other, resonances with I=1 are found, with minimal quark content sss\bar{l}l', being s the strange quark and l, l' any of the the light up or down quarks. A clear signal for such a pentaquark would be a baryonic resonance with strangeness -3 and electric charge of -2 or 0, in proton charge units. We suggest looking for K- Xi- resonances with masses around 2100 and 2240 MeV in the sector 1(1/2^-), and for pi Omega- and K- Xi*- resonances with masses around 2260 MeV in the sector 1(3/2^-).Comment: 3 pages, 1 Postscript figure, 7 table

    Evolving wormhole geometries within nonlinear electrodynamics

    Get PDF
    In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. For the (2+1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3+1)-dimensional wormhole solutions, in the presence of an electric field, and the (2+1)-dimensional case coupled to nonlinear electrodynamics.Comment: 17 pages, 1 figure; to appear in Classical and Quantum Gravity. V2: minor corrections, including a referenc

    Formation spectra of charmed meson–nucleus systems using an antiproton beam

    Get PDF
    AbstractWe investigate the structure and formation of charmed meson–nucleus systems, with the aim of understanding the charmed meson–nucleon interactions and the properties of the charmed mesons in the nuclear medium. The D¯ mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the D¯N pair. Employing an effective model for the D¯N and DN interactions and solving the Klein–Gordon equation for D¯ and D in finite nuclei, we find that the D−–11B system has 1s and 2p mesic nuclear states and that the D0–11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [D−–11B] and [D0–11B] mesic nuclei for an antiproton beam on a 12C target. Our results suggest that it is possible to observe the 2p D− mesic nuclear state with an appropriate experimental setup
    • …
    corecore