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We investigate the structure and formation of charmed meson–nucleus systems, with the aim of 
understanding the charmed meson–nucleon interactions and the properties of the charmed mesons in 
the nuclear medium. The D̄ mesic nuclei are of special interest, since they have tiny decay widths due 
to the absence of strong decays for the D̄N pair. Employing an effective model for the D̄N and DN
interactions and solving the Klein–Gordon equation for D̄ and D in finite nuclei, we find that the D−–11B 
system has 1s and 2p mesic nuclear states and that the D0–11B system binds in a 1s state. In view of the 
forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC 
upgrade, we calculate the formation spectra of the [D−–11B] and [D0–11B] mesic nuclei for an antiproton 
beam on a 12C target. Our results suggest that it is possible to observe the 2p D− mesic nuclear state 
with an appropriate experimental setup.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of hadronic atoms provides essential information on 
the properties of hadron–nucleon interactions, hadrons in matter 
as well as the properties of nuclei that are not accessible by other 
probes. Pionic and kaonic atoms have been intensively investigated 
over the years [1–6], whereas antiprotons in atoms have become a 
matter of recent interest [7–9].

In view of the forthcoming experiments by the PANDA and 
CBM Collaborations at the future FAIR facility [10] and the J-PARC 
upgrade [11], the attention has been also focused on charmed 
meson–nucleus systems. One of the first works on charmed mesic 
nuclei analyzed the possibility of D− atoms [12]. There, the 1s, 2s
and 1p states of D− in 208Pb were evaluated using the quark–
meson coupling model of Ref. [13]. The energy levels of the D̄
meson in 208Pb and 40Ca were obtained in [14] within a model 
for the charmed meson–nucleon interaction based on the pion ex-
change. Also, D̄ N N and D̄∗N N bound states were predicted in [15,
16] as well as a bound state of DN N in [17].
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All these works rely upon building a realistic charmed meson–
nucleon interaction and extending the analysis to the nucleus. 
In that respect, unitarized meson–baryon coupled-channel ap-
proaches including the charm degree of freedom have been very 
successful [18–35]. However, these models do not explicitly incor-
porate heavy-quark spin symmetry (HQSS) [36–38] and, thus, it is 
unclear whether they fulfilled the constraints imposed by HQSS. 
HQSS is a QCD symmetry that appears when the quark masses, 
such as the charm mass, become larger than the typical confine-
ment scale.

The implementation of HQSS constraints on the meson–baryon 
interactions with heavy-quark degrees of freedom has been more 
recently studied in [39–46]. Among these works, we must highlight 
those based on an extension of the Weinberg–Tomozawa (WT) in-
teraction to spin-flavor including HQSS constraints [39–44]. Within 
this approach, we have analyzed the properties of D and D̄ as 
well as D∗ and D̄∗ in dense matter and studied the formation of 
charmed-meson nucleus bound states [47–49].

In Ref. [48] we have obtained that D0 binds weakly with nu-
clei, in contrast to [12], while the D0-nucleus states have signifi-
cant widths, in particular for heavy nuclei such as 208Pb. The best 
chances for observation of bound states are in the region of 24Mg, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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provided an orbital angular momentum separation can be done. 
Moreover, only D0-nucleus bound states are possible since the 
Coulomb interaction prevents the formation of observable bound 
states for D+ mesons. With regard to D̄-mesic nuclei, not only D−
but also D̄0 bind in nuclei [49]. The spectrum contains states of 
atomic and of nuclear types for all nuclei for D− whereas only nu-
clear states are present for D̄0 in nuclei, as expected. Compared 
to the pure Coulomb levels, the atomic states are less bound. The 
nuclear ones are more bound and may present a sizable width. 
Moreover, nuclear states only exist for low angular momenta.

In this work, we continue these previous studies and investigate 
the possibility of observing D−–11B and D0–11B bound states in 
12C(p̄, D+) and 12C(p̄, D̄0) nuclear reactions. The formation spec-
tra are calculated with the Green’s function method. This is the 
first attempt to calculate the formation spectra for charmed mesic 
nuclear states with an energy dependent optical potential coming 
from the charmed meson–nucleon interaction in matter. Through-
out this study, we set the incident antiproton beam at 8 GeV/c and 
the final-state D+ and D̄0 mesons to go forward direction, in an 
attempt to give useful information to experiments with antiprotons 
beams, such as PANDA (FAIR) and J-PARC.

This paper is organized as follows. In Sec. 2 we present the 
formation spectra in terms of the production cross sections of the 
(p̄, D+) and (p̄, D̄0) reactions on a nuclear target. We also describe 
the DN and D̄N effective interactions in medium together with the 
D and D̄ self-energies and optical potentials used in this study. 
Details on the construction of the nuclear density to evaluate the 
optical potentials for a given nucleus are presented in Appendix A. 
Next, in Sec. 3 we show our numerical results on the structure 
of charmed meson–nuclear systems and the formation spectra for 
them. Section 4 is devoted to the conclusions of this paper.

2. Formalism

First of all, we present the formalism for the formation spec-
tra of charmed meson–nuclear systems in terms of the differential 
cross sections of the (p̄, D+) and (p̄, D̄0) reactions on a nuclear 
target. In the calculation of the formation spectra, the charmed 
meson–nucleon scattering amplitudes as well as the charmed 
meson self-energies and optical potentials are essential. In this 
study we employ the approach proposed in Refs. [47–49]. The 
charmed meson–nucleon interaction in matter and the correspond-
ing charmed meson self-energies are presented in Sec. 2.1. Then, in 
Sec. 2.2 we construct the optical potential for the charmed mesons, 
that are needed for the solution of the Klein–Gordon equation 
(KGE) for the charmed meson–nuclear systems, and summarize our 
procedure to calculate the production cross section in the Green’s 
function method.

2.1. Charmed meson–nucleon scattering amplitudes and charmed 
meson self-energies

The different charmed meson–nucleon scattering amplitudes in 
symmetric nuclear matter and the corresponding charmed meson 
self-energies are obtained following a self-consistent procedure in 
coupled channels, as described in [47,48] for the D meson and in 
[49] for D̄ meson. Here we summarize the main features.

The s-wave transition charmed meson–nucleon potential of the 
Bethe–Salpeter equation is derived from an effective Lagrangian 
that implements HQSS [36–38]. HQSS is an approximate QCD sym-
metry that treats on equal footing heavy pseudoscalar and vector 
mesons, such as charmed and bottomed mesons [39–49]. The ef-
fective Lagrangian includes the lowest-lying pseudoscalar and vec-
tor mesons as well as 1/2+ and 3/2+ baryons. It reduces to the 
WT interaction term in the sector where Goldstone bosons are in-
volved and incorporates HQSS in the sector where heavy quarks 
participate. This SU(6) × HQSS model is justified in view of the 
reasonable semi-qualitative outcome of the SU(6) extension [50]
and on a formal plausibleness on how the SU(4) WT interaction 
in the heavy pseudoscalar meson–baryon sectors comes out in the 
vector–meson exchange picture (see for instance Refs. [21,25]).

The extended WT meson–baryon interaction in the coupled 
meson–baryon basis with total charm C , strangeness S , isospin I
and spin J , is given by

V CSIJ
i j (

√
s) = DCSIJ

i j

2
√

s − Mi − M j

4 f i f j

√
Ei + Mi

2Mi

√
E j + M j

2M j
, (1)

where 
√

s is the center of mass (C.M.) energy of the system; Ei
and Mi are, respectively, the C.M. on-shell energy and mass of the 
baryon in the channel i; and f i is the decay constant of the me-
son in the i-channel. Symmetry breaking effects are introduced by 
using physical masses and decay constants. The DCSIJ

i j are the ma-
trix elements coming from the group structure of the extended WT 
interaction.

The amplitudes in nuclear matter, T ρ,CSIJ(P 0, P ) with P =
(P 0, P ) the total four-momentum, are obtained by solving the 
on-shell Bethe–Salpeter equation with the tree level amplitude 
V CSIJ(

√
s):

T ρ,CSIJ(P ) = 1

1 − V CSIJ(
√

s) Gρ,CSIJ(P )
V CSIJ(

√
s), (2)

where the diagonal Gρ,CSIJ(P ) matrix accounts for the charmed 
meson–baryon loop in nuclear matter [47,49]. We focus in the 
non-strange S = 0 and singly charmed C = 1 sector, where DN
and D∗N are embedded, as well as the C = −1 one, with D̄N and 
D̄∗N .1

The D(D̄) and D∗(D̄∗) self-energies in symmetric nuclear mat-
ter, �(q0, q; ρ), are obtained by summing the different isospin 
transition amplitudes for D(D̄)N and D∗(D̄∗)N over the nucleon 
Fermi distribution, pF . For the D(D̄) we have

�D(D̄)(q
0,q;ρ)

=
∫

p≤pF

d3 p

(2π)3

[
T ρ,0,1/2

D(D̄)N
(P 0, P ) + 3 T ρ,1,1/2

D(D̄)N
(P 0, P )

]
, (3)

while for D∗(D̄∗)

�D∗(D̄∗)(q
0,q;ρ)

=
∫

p≤pF

d3 p

(2π)3

[
1

3
T ρ,0,1/2

D∗(D̄∗)N
(P 0, P ) + T ρ,1,1/2

D∗(D̄∗)N
(P 0, P )

+ 2

3
T ρ,0,3/2

D∗(D̄∗)N
(P 0, P ) + 2 T ρ,1,3/2

D∗(D̄∗)N
(P 0, P )

]
. (4)

In the above equations, P 0 = q0 + E N (p) and P = q + p are the 
total energy and momentum of the meson–nucleon pair in the 
nuclear matter rest frame, and (q0, q) and (E N , p) stand for the 
energy and momentum of the meson and nucleon, respectively, 
in that frame. Those self-energies are determined self-consistently 
since they are obtained from the in-medium amplitudes which 
contain the meson–baryon loop functions, and those quantities 
themselves are functions of the self-energies.

1 Note that D denotes D+ and D0, whereas D̄ indicates D− and D̄0.
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2.2. Optical potential and formation spectra

In order to calculate the formation spectra of the meson–
nucleus bound states, we need the optical potential of a meson in 
the nucleus. Relying on the local density approximation, we evalu-
ate the optical potential for the D− (D0) mesons2

V opt(r, E D) = 1

2mD
�D−(D0)(E D ,q = 0;ρ(r)), (5)

where r is the distance from the center of the nucleus and E D is 
the energy of the charmed meson, i.e. E D is same as q0 in Sec. 2.1. 
The nuclear density ρ(r) is evaluated from the neutron and proton 
densities. The densities are deconvoluted as in Ref. [3] to account 
for the proton and neutron finite sizes. The details on the proton 
and neutron densities are given in Appendix A.

With the optical potential V opt we can obtain the meson wave 
function in the nucleus by solving the KGE

[−∇2 + μ2 + 2μV opt(r, E D − V coul(r))]φ(r)

= [E D − V coul(r)]2φ(r), (6)

with μ the D meson–nucleus reduced mass. Here V coul(r) is the 
Coulomb potential given by

V coul(r) = e2 Z D

∫
ρch(r′)
|r − r′|d3r′, (7)

where e is the elementary charge, Z D is the charge of the charmed 
meson, and ρch(r) is the charge distribution of the nucleus of 
Eq. (A.1). We note that, for the D0-nucleus system, the Coulomb 
interaction is automatically removed, since Z D = 0.

Next we discuss the procedure to calculate the formation spec-
tra in terms of the differential cross sections in the Green’s func-
tion method [51]. The details of the Green’s function method can 
be found in Refs. [52–56], and here we only summarize the main 
features.

In this work, we calculate the formation spectra of the D−–, 
D0–11B systems in the

p̄ + 12C →
[

11B − D−]
+ D+, (8)

p̄ + 12C →
[

11B − D0
]
+ D̄0 (9)

reactions. As mentioned in the introduction, these processes are of 
interest for the forthcoming experiments by the PANDA and CBM 
Collaborations at the future FAIR facility and in J-PARC. For simplic-
ity, we concentrate on the formation spectra of the (p̄, D̄) process.

The present method starts with the separation of the cross sec-
tion into the nuclear response function S(E D ) and the elementary 
cross section for the p(p̄, D̄)D reaction within the impulse approx-
imation for D meson production(

d2σ

d�dE D

)
A(p̄,D̄)(A−1)⊗D

=
(

dσ

d�

)LAB

p(p̄,D̄)D
× S(E D). (10)

The differential cross section of the elementary process p(p̄, D̄)D
in the laboratory frame (LAB), (dσ/d�)LAB

p(p̄,D̄)D
, can be evaluated 

using some appropriate models or be taken from experimental 
data. For this cross section, we will use the theoretical results 
of Ref. [57]. The nuclear response function S(E D) contains infor-
mation on the dynamics between D-meson and the final (A − 1)

2 For the calculation of the D− optical potential we do not vary the subtraction 
point, namely α = 1, and we do not consider the nucleon extraction energy (or gap) 
(see [49] for details).
nucleus. To calculate the nuclear response function, we employ the 
Green’s function method. Namely, the nuclear response function 
with a complex potential is formulated in Ref. [51] as

S(E D) = − 1

π
Im

∑
f

∫
d3rd3r′ τ †

f (r)G(E D; r, r′)τ f (r′), (11)

where τ f denotes the transition amplitude of the initial state 
p̄ + A Z to the proton–hole final nucleus and the outgoing D − D̄
meson pair, and G(E D ; r, r′) is the Green’s function of the D me-
son interacting with the nucleus. The summation is taken over all 
possible final states f . The Green’s function G(E D ; r, r′) is defined 
as,

G(E D; r, r′) = 〈α|φ(r)
1

E D − H D + iε
φ†(r′)|α〉, (12)

where α indicates the proton–hole state, H D is the Hamiltonian 
of the D meson–nucleus system, and φ†(r) is the D meson cre-
ation operator. The transition amplitude τ f involves the proton–
hole wave function ψ jN and the distorted waves χi and χ f of the 
projectile and ejectile, respectively. The distorted waves are calcu-
lated within the eikonal approximation as

χ∗
f (r)χi(r) = exp(iq · r)F (r), (13)

with the momentum transfer q and the distortion factor F (r) de-
fined as

F (r) = exp

⎡
⎣−1

2
σ̄

∞∫
−∞

dz′ρ̄(z′, r)

⎤
⎦ , (14)

where σ̄ is the averaged cross section

σ̄ = σp̄N + σD̄N

2
, (15)

with σp̄N and σD̄N , the total p̄N and DN cross sections, respec-
tively. We use the values σp̄N = 59 mb, and σD̄N = 10 mb obtained 
in the theoretical calculation of Ref. [30]. Besides, the averaged 
nuclear density, ρ̄ , is approximated by that of the 11B nucleus 
(Eq. (A.5)). By performing the spin sums, the amplitude τ f can 
be written as,

τ f (r) = χ∗
f (r)ξ∗

1/2,ms
[Y ∗

lφ
(r̂) ⊗ ψ jN (r)] J M χi(r), (16)

where it appears also the D-meson angular wave function Ylφ (r̂), 
which depends on the direction of the vector r (r̂), and the spin 
wave function ξ1/2,ms of the outgoing D̄-meson. We assume har-
monic oscillator wave functions for the proton–hole ψ jN wave 
function calculated with an empirical value of range parameter. 
We stress that within this approach, the D-nucleus optical poten-
tial only enters in the Hamiltonian H D that appears in the Green’s 
function.

3. Numerical results

Next, we show our numerical results for the structure and for-
mation spectra of the D−- and D0-nucleus bound states. In the 
present calculation, we focus on the 12C(p̄, D+) and 12C(p̄, D̄0)

reactions, and thus we consider the [D− − 11B] and [D0 − 11B]
systems. After discussing the properties of the charmed meson–
nucleus bound states obtained by solving the KGE in Sec. 3.1, we 
show the formation spectra for these states in Sec. 3.2.
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Table 1
Binding energies BE and widths � of D− atomic states in 11B.

State Coulomb only Coulomb + optical

BE [keV] BE [keV] � [keV]

1s 844.8 446.1 77.0
2s 236.1 162.5 17.0
3s 108.9 83.7 6.3
4s 62.4 50.9 3.0
2p 264.4 249.7 9.7
3p 117.4 112.3 3.3
4p 66.0 63.8 1.5
3d 117.6 117.6 6.0
4d 66.1 66.1 3.5
4 f 66.0 66.0 2.5

Table 2
Binding energies BE and widths � of D− and D0 nuclear states in 11B.

State D− meson D0 meson

BE [MeV] � [MeV] BE [MeV] � [MeV]

1s 21.7 0.5 6.5 10.8
2p 14.5 2.4 – –

3.1. Atomic and nuclear charmed meson bound states in 11B

Binding energy (BE > 0) and width (�) of the charmed 
meson–11B bound states are related to the eigenenergy appear-
ing in Eq. (6) by E D = μ − BE − i�/2. Since the D− or D̄0 meson 
optical potential V opt(r, E D) depends on the energy, we have self-
consistently solved the KGE [48,49]. We start by discussing the D−
atomic levels in 11B, which are Coulomb assisted bound states. The 
found levels are compiled in Table 1, where we show both the re-
sults obtained only with the Coulomb potential and those obtained 
when the optical potential is added to the Coulomb interaction. We 
can see that the inclusion of the strong interaction leads to smaller 
binding energies for both s and p orbital states compared to the 
corresponding values obtained when only the Coulomb interaction 
is considered. This is to say, the strong interaction between the 
D−-meson and the 11B nucleus is repulsive in this case. This is 
caused by the level repulsion induced by the existence of nuclear 
bound s and p states. In addition, the imaginary part of the optical 
potential has a well-known repulsive effect, also seen in [49]. We 
emphasize that the decay widths are smaller than the binding en-
ergies thanks to the absence of strong decay channels for the D−N
pair,3 which implies that such D− atomic states may be observed 
in dedicated experiments.

Next, we search for charmed meson–nuclear bound states origi-
nated from the strong interaction via the optical potential. Binding 
energies and decay widths are listed in Table 2. We find 1s and 2p
nuclear states for [D−–11B] and a 1s nuclear state for the [D0–11B] 
system. The binding energies turn out to be around ten MeV or 
more. We find narrow widths for the D− mesic nuclear states,4

however the decay width of the D0 mesic nuclear state is larger 
than its binding energy. This is due to the existence of open strong 
decay modes (�cπ , �cπ ) of the DN pair. The natural question 
that arises is whether these mesic nuclear states will appear in 
the spectrum of the one proton pick-up reactions. We address this 
issue in the next subsection.

3 Indeed, the small widths in the medium are due to the excitation of particle–
hole, i.e., D̄ → D̄N N−1 [49].

4 Note that it is expected that D̄0 nuclear states will resemble those of D− due 
to isospin symmetry, as seen in Ref. [49].
Fig. 1. Momentum transfer (LAB frame) as a function of the antiproton momentum 
in the 12C(p̄, D̄) reaction.

Fig. 2. Formation spectrum for the p̄ + 12C → [
11B − D−] + D+ reaction at P p̄ =

8 GeV/c and θLAB
D+ = 0◦ , as a function of the outgoing D+ meson total energy. 

The partial contributions of some shell configurations of the final nucleus are also 
shown in the figure. The vertical dashed line indicates the D− meson production 
threshold.

3.2. Formation spectra

We calculate the formation spectra of the [D−–11B] and 
[D0–11B] systems. We produce these states in the 12C(p̄, D+) and 
12C(p̄, D̄0) reactions, respectively (Eqs. (8) and (9)). We consider 
forward scattering for the outgoing D+ or D̄0 meson to maxi-
mally suppress the momentum transferred to the mesic nuclear 
or atomic bound states. Using this kinematics, we show in Fig. 1
the momentum transfer in these reactions as a function of the an-
tiproton momentum, P p̄ , in the LAB frame. We see that a large 
momentum transfer about 1 GeV/c is inevitable when working 
with an antiproton beam.

In this preliminary study we fix the LAB antiproton momentum 
to 8 GeV/c, since we expect to obtain in this region, both a large 
elementary cross section [58] and a momentum transfer close to 
the smallest possible, as seen in Fig. 1. On the other hand, we use 
the theoretical results of Ref. [57] for the differential cross sec-
tion of the elementary process (dσ/d�)LAB at forward angle of the 
outgoing D+/D̄0 meson. Thus, at P p̄ = 8 GeV/c, we take 760 nb/sr 
(40 nb/sr) for the pp̄ → D+D− (pp̄ → D0 D̄0) reaction.

In Fig. 2, we show the formation spectrum of the [D−–11B] sys-
tem as a function of the outgoing D+ meson total energy (T D+ ) 
in the LAB frame. We can appreciate a bump structure around 
T D+ = 5250 MeV placed below the D− production threshold. It 
comes from the contribution of the 1p3/2 hole configuration of 
11B, and the peak corresponds to the 2p state of the [D−–11B] nu-
clear state found in the previous subsection. However, its strength 
is very small compared to the quasifree contribution above the D−
production threshold (T D+ > 5238 MeV), mainly due to the very 
large momentum transfer in the reaction. The cross section for 
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Fig. 3. Same as in Fig. 2, but for the p̄+12C → [
11B − D0

]+ D̄0 reaction. The vertical 
dashed line indicates now the D0 meson production threshold.

Fig. 4. As in Fig. 3, but covering the region of very deep D0 binding energies.

the reaction is proportional to |�nlm(q)|2, where �nlm(q) is the 
D− bound wave function in momentum space [59–62]. The cross 
sections are small because the D− bound wave function has dif-
ficulty to accommodate such large momentum of around 1 GeV. 
Given the expected typical size of the D− bound states (similar to 
D0 in Ref. [48]), momentum components significantly larger than 
0.4–0.5 GeV in the D− bound wave function are already expected 
to be small. Thus, one gets a large suppression form factor. The 
large momentum transfer also leads to the disappearance of the 
1s state below the 2p state in the formation spectrum, since the 
1s1/2 hole contribution is negligible in the bound region.5

In Fig. 3 we show now the formation spectrum of the [D0–11B] 
system as a function of the outgoing D̄0 meson total energy (T D̄0 ) 
in the LAB frame. In this case, we do not see in the formation 
spectrum any signature of the 1s nuclear state with B E = 6.5 MeV
reported in Table 2. This is again because of the large momentum 
transfer of the reaction. However, we note that we find two peaks 
in formation spectrum for D̄0 energies in the region of 5.5 GeV, 
which would correspond to very deeply bound D0 states. These 
structures are shown in Fig. 4, but we do not obtain any eigen-
states in such deep energy region. These peaks in the formation 
spectrum come from the energy dependence of the optical po-
tential, as can be seen in Fig. 5, and they are associated to the 
dynamically-generated �c(2556)-hole and �c(2595)-hole states, 
as discussed in [47].

As already noted, the rather large momentum transfer involved 
in the p̄ + p → D + D̄ reactions tends to hinder the formation 

5 Due to the large momentum transfer, the convergence of the formation spec-
trum above the threshold becomes very slow and we have needed to sum up to 
fifteen D−-nucleus partial waves.
Fig. 5. D0–11B optical potential [47] for several nuclear densities in terms of the 
nuclear matter saturation density, ρ0, as a function of the D0 meson energy.

process. Much smaller momentum transfers can be achieved with 
alternative reactions. For instance,

p̄ + p → D∗− + D+,

D∗− + A Z → π0 + [
A Z − D−]

b . (17)

After emission of a pion the charmed meson can be slow and get 
trapped by the nucleus. More generally, in reactions of the type 
p̄ + N → D̄∗ + D followed by D̄∗ → D̄ +π or p̄ + N → D̄ + D∗ fol-
lowed by D∗ → D + π , the vector meson may be real or virtual 
and the D or D̄ produced may be slow and get trapped. (Note that 
nothing prevents the antiproton to annihilate with the neutrons in-
stead of the protons of the nucleus, thereby increasing the reaction 
cross section.) Likewise, bremsstrahlung of pions produced by the 
antiproton as it impacts the nucleus also changes the kinematics 
and could lead to new formation mechanisms. All these alterna-
tive mechanisms in which energy and momentum is released by 
emission of pions (or even photons) could help to reduce the mo-
mentum transfer to the final charmed meson and are therefore 
worth studying. From the theoretical point of view we would ex-
pect sizeable formation peaks over a flat background.

4. Conclusions

In this work we have calculated the formation spectra of the 
charmed/anti-charmed mesic nuclear states in the 12C(p̄, D+) and 
12C(p̄, D̄0) antiproton reactions, aiming to provide useful informa-
tion for experiments such as PANDA in the future FAIR facility and 
J-PARC. There exists also the possibility of observing these exotic 
mesic nuclei in relativistic heavy-ion collisions, such as those tak-
ing place in the future CBM experiment at FAIR.

For this purpose, we have described the (anti-)charmed meson–
nucleon scattering amplitude in dense matter by employing a uni-
tarized coupled-channels model based on an extended WT inter-
action to account for HQSS constraints in the charm sector. Then, 
with the (anti-)charmed meson–nucleon amplitude in matter, we 
have constructed the self-energies and, hence, optical potentials of 
the (anti-)charmed mesons in 11B. Solving the KGE with the D−
and D0 optical potentials in 11B, we have found 1s and 2p nu-
clear states for the D− case and only the 1s level for the D0 case, 
in addition to the atomic states for D− . Of special interest is the 
fact that the anti-charmed [D−–11B] nuclear states have very small 
decay widths from quasi-elastic D−N → D̄N ′ collisions.

Next, we have calculated the charmed and anti-charmed mesic 
nuclear formation spectra in the 12C(p̄, D+) and 12C(p̄, D̄0) reac-
tions by employing the Green’s function method. The momentum 
of the antiproton beam has been fixed to 8 GeV/c, and the final 
mesons D+/D̄0 are taken in the forward direction to suppress as 
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much as possible the momentum transferred to the mesic nuclear 
bound states. We have found, on the one hand, that the 2p D−
nuclear state may show up in the formation spectrum as a small 
peak. However, its peak strength is very small compared to the 
quasifree contribution above the D− production threshold, mainly 
due to the very large momentum transfer in the reaction. The large 
momentum transfer also leads to the disappearance of the 1s state 
below the 2p state in the formation spectrum for D− . On the other 
hand, for the D0 meson, the nuclear bound state does not lead to 
any visible signatures in the spectrum, although at deep energy 
regions large peaks are present. These structures correspond to 
the dynamically-generated �c(2556)-hole and �c(2595)-hole ex-
citations, and their experimental observation might shed light into 
the dynamics of these resonances inside of a nuclear environment.

Finally we note that in the (p̄, D+) and (p̄, D̄0) reactions, the 
momentum transfer is inevitably large. Therefore, in order to have 
visible strengths for the 1s or 2p nuclear states, we should con-
sider different production reactions with small momentum trans-
fer. One possibility is to examine the (p̄, D + N) and (p̄, D + 2N)

reactions, with a much smaller or even zero momentum transfer, 
although the formation cross sections could be suppressed as well 
because of the complexity of the reaction mechanisms. Other com-
peting formation mechanisms could involve the emission of pions 
by real or virtual intermediate D∗ or D̄∗ with subsequent trapping 
of the slow pseudoscalar charmed meson by the final nucleus.
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Appendix A. Neutron and proton densities

For the evaluation of the nuclear density ρ(r) of a given nu-
cleus, one has to obtain the neutron and proton densities. Namely 
for the 11B nucleus, on the one hand, the charge distribution ρch
is given by a modified harmonic oscillator (MHO) distribution

ρch(r) = ρ0

[
1 + a

( r

R

)2
]

exp

[
−

( r

R

)2
]

. (A.1)

The neutron matter distribution is taken to be identical to ρch. On 
the other hand, the densities of proton (ρp) and neutron (ρn) turn 
out to have also a MHO shape [3], but with modified parameters 
to account for the proton and neutron finite sizes,

ρp,n(r) = ρ ′
0

[
1 + a′ ( r

R ′
)2

]
exp

[
−

( r

R ′
)2

]
, (A.2)

with the parameters a′ and R ′ given by

a′ = 2x

2 − 3x
, x = aR2

1 + 3a/2

1

R ′ 2
, (A.3)

R ′ =
√

R2 − 2 〈rp,n〉2, (A.4)

3

with the mean radius of the proton or neutron 〈r2
p,n〉 = 0.69 fm2. 

Then the nuclear density ρ is the sum of the proton and neutron 
densities:

ρ(r) = ρp(r) + ρn(r). (A.5)

We use R = 1.69 fm and a = 0.811, and the normalization factors 
ρ0 and ρ ′

0 are determined so that 
∫

d3rρch(r) = ∫
d3rρp(r) = 5, 

and 
∫

d3rρn(r) = 6.
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