727 research outputs found

    Specific Performance under Venezuelan Law

    Get PDF

    Scanning Tunneling Microscopy in the superconductor LaSb2

    Get PDF
    We present very low temperature (0.15 K) scanning tunneling microscopy and spectroscopy experiments in the layered superconductor LaSb2_2. We obtain topographic microscopy images with surfaces showing hexagonal and square atomic size patterns, and observe in the tunneling conductance a superconducting gap. We find well defined quasiparticle peaks located at a bias voltage comparable to the weak coupling s-wave BCS expected gap value (0.17 meV). The amount of states at the Fermi level is however large and the curves are significantly broadened. We find Tc_c of 1.2 K by following the tunneling conductance with temperature.Comment: 5 pages, 4 figure

    Magnetic and superconducting phase diagrams in ErNi2B2C

    Get PDF
    We present measurements of the superconducting upper critical field Hc2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.Comment: 5 pages, 4 figure

    Scanning tunneling spectroscopy of layers of superconducting 2H-TaSe2_\textbf{2}: Evidence for a zero bias anomaly in single layers

    Get PDF
    We report a characterization of surfaces of the dichalcogenide TaSe2_2 using scanning tunneling microscopy and spectroscopy (STM/S) at 150 mK. When the top layer has the 2H structure and the layer immediately below the 1T structure, we find a singular spatial dependence of the tunneling conductance below 1 K, changing from a zero bias peak on top of Se atoms to a gap in between Se atoms. The zero bias peak is additionally modulated by the commensurate 3a0×3a03a_0 \times 3a_0 charge density wave of 2H-TaSe2_2. Multilayers of 2H-TaSe2_2 show a spatially homogeneous superconducting gap with a critical temperature also of 1 K. We discuss possible origins for the peculiar tunneling conductance in single layers.Comment: 10 pages, 10 figure

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    Magnetic field dependence of the density of states in the multiband superconductor β\beta-Bi2_2Pd

    Full text link
    We present very low temperature scanning tunneling microscopy (STM) experiments on single crystalline samples of the superconductor β\beta-Bi2_2Pd. We find a single fully isotropic superconducting gap. However, the magnetic field dependence of the intervortex density of states is higher than the one expected in a single gap superconductor, and the hexagonal vortex lattice is locked to the square atomic lattice. Such increase in the intervortex density of states and vortex lattice locking have been found in superconductors with multiple superconducting gaps and anisotropic Fermi surfaces. We compare the upper critical field Hc2(T)H_{c2}(T) obtained in our sample with previous measurements and explain available data within multiband supercondutivity. We propose that β\beta-Bi2_2Pd is a single gap multiband superconductor. We anticipate that single gap multiband superconductivity can occur in other compounds with complex Fermi surfaces.Comment: 8 pages, 7 figure

    Methodology for hand-tool vibration analysis using bond graph

    Get PDF
    This paper presents an efficient and easy methodology for modeling the vibrational behavior of common portable tools using as example a hand-driller. The work described in this paper uses a Hand-Tool model previously developed by the authors and couples it with different Hand-Arm-System (HAS) in order to evaluate which one reproduces the most realistic vibrational behavior. Although proposed for hand-tools, it can be extended for any kind of tool that produces vibration during its operation. This methodology summarizes different techniques in order to analyze the vibrational system. The different components of the hand-driller are represented as lumped masses and the connections between them with a spring and a damper. The elastic constant for the structural elements are determined by FEA using SolidWorks simulations, while the damping constant values used are the recommended by the software 20-sim for structural damping. Once the model is developed, it will be shown how the corresponding Bond-Graph diagram can be obtained and how it helps in obtaining the equations that describe the model. The software 20-sim is used to simulate the developed Bond-Graph model and to determine the Hand-Arm system vibrational response for a specific excitation force
    corecore