727 research outputs found
Scanning Tunneling Microscopy in the superconductor LaSb2
We present very low temperature (0.15 K) scanning tunneling microscopy and
spectroscopy experiments in the layered superconductor LaSb. We obtain
topographic microscopy images with surfaces showing hexagonal and square atomic
size patterns, and observe in the tunneling conductance a superconducting gap.
We find well defined quasiparticle peaks located at a bias voltage comparable
to the weak coupling s-wave BCS expected gap value (0.17 meV). The amount of
states at the Fermi level is however large and the curves are significantly
broadened. We find T of 1.2 K by following the tunneling conductance with
temperature.Comment: 5 pages, 4 figure
Magnetic and superconducting phase diagrams in ErNi2B2C
We present measurements of the superconducting upper critical field Hc2(T)
and the magnetic phase diagram of the superconductor ErNi2B2C made with a
scanning tunneling microscope (STM). The magnetic field was applied in the
basal plane of the tetragonal crystal structure. We have found large gapless
regions in the superconducting phase diagram of ErNi2B2C, extending between
different magnetic transitions. A close correlation between magnetic
transitions and Hc2(T) is found, showing that superconductivity is strongly
linked to magnetism.Comment: 5 pages, 4 figure
Scanning tunneling spectroscopy of layers of superconducting 2H-TaSe: Evidence for a zero bias anomaly in single layers
We report a characterization of surfaces of the dichalcogenide TaSe using
scanning tunneling microscopy and spectroscopy (STM/S) at 150 mK. When the top
layer has the 2H structure and the layer immediately below the 1T structure, we
find a singular spatial dependence of the tunneling conductance below 1 K,
changing from a zero bias peak on top of Se atoms to a gap in between Se atoms.
The zero bias peak is additionally modulated by the commensurate charge density wave of 2H-TaSe. Multilayers of 2H-TaSe show a
spatially homogeneous superconducting gap with a critical temperature also of 1
K. We discuss possible origins for the peculiar tunneling conductance in single
layers.Comment: 10 pages, 10 figure
Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps
Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property
Magnetic field dependence of the density of states in the multiband superconductor -BiPd
We present very low temperature scanning tunneling microscopy (STM)
experiments on single crystalline samples of the superconductor
-BiPd. We find a single fully isotropic superconducting gap.
However, the magnetic field dependence of the intervortex density of states is
higher than the one expected in a single gap superconductor, and the hexagonal
vortex lattice is locked to the square atomic lattice. Such increase in the
intervortex density of states and vortex lattice locking have been found in
superconductors with multiple superconducting gaps and anisotropic Fermi
surfaces. We compare the upper critical field obtained in our
sample with previous measurements and explain available data within multiband
supercondutivity. We propose that -BiPd is a single gap multiband
superconductor. We anticipate that single gap multiband superconductivity can
occur in other compounds with complex Fermi surfaces.Comment: 8 pages, 7 figure
Methodology for hand-tool vibration analysis using bond graph
This paper presents an efficient and easy methodology for modeling the vibrational behavior of common portable tools using as example a hand-driller. The work described in this paper uses a Hand-Tool model previously developed by the authors and couples it with different Hand-Arm-System (HAS) in order to evaluate which one reproduces the most realistic vibrational behavior. Although proposed for hand-tools, it can be extended for any kind of tool that produces vibration during its operation. This methodology summarizes different techniques in order to analyze the vibrational system. The different components of the hand-driller are represented as lumped masses and the connections between them with a spring and a damper. The elastic constant for the structural elements are determined by FEA using SolidWorks simulations, while the damping constant values used are the recommended by the software 20-sim for structural damping. Once the model is developed, it will be shown how the corresponding Bond-Graph diagram can be obtained and how it helps in obtaining the equations that describe the model. The software 20-sim is used to simulate the developed Bond-Graph model and to determine the Hand-Arm system vibrational response for a specific excitation force
- …