544 research outputs found

    Bayesian model comparison applied to the Explorer-Nautilus 2001 coincidence data

    Full text link
    Bayesian reasoning is applied to the data by the ROG Collaboration, in which gravitational wave (g.w.) signals are searched for in a coincidence experiment between Explorer and Nautilus. The use of Bayesian reasoning allows, under well defined hypotheses, even tiny pieces of evidence in favor of each model to be extracted from the data. The combination of the data of several experiments can therefore be performed in an optimal and efficient way. Some models for Galactic sources are considered and, within each model, the experimental result is summarized with the likelihood rescaled to the insensitivity limit value (``R{\cal R} function''). The model comparison result is given in in terms of Bayes factors, which quantify how the ratio of beliefs about two alternative models are modified by the experimental observationComment: 16 pages, 4 figures. Presented at the GWDAW2002 conference, held in Kyoto on Dec.,2002. This version includes comments by the referees of CQG, which has accepted the paper for pubblication in the special issue of the conference. In particular, note that in Eq. 12 there was a typeset error. As suggested by one of the referees, a uniform prior in Log(alpha) has also been considere

    High-Frequency network activity, global increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro

    Get PDF
    How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (100 Hz) and reduction in system complexity.HFAis generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles ofHFAare generated by the near-synchronous (within 5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is haracterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure

    Deep Photometry of the Globular Cluster M5: Distance Estimates from White Dwarf and Main Sequence Stars

    Full text link
    We present deep VI photometry of stars in the globular cluster M5 (NGC 5904) based on images taken with the Hubble Space Telescope. The resulting color-magnitude diagram reaches below V ~ 27 mag, revealing the upper 2-3 magnitudes of the white dwarf cooling sequence, and main sequence stars eight magnitudes and more below the turn-off. We fit the main sequence to subdwarfs of known parallax to obtain a true distance modulus of (m-M)_0 = 14.45 +/- 0.11 mag. A second distance estimate based on fitting the cluster white dwarf sequence to field white dwarfs with known parallax yielded (m-M)_0 = 14.67 +/- 0.18 mag. We couple our distance estimates with extensive photometry of the cluster's RR Lyrae variables to provide a calibration of the RR Lyrae absolute magnitude yielding M_V(RR) = 0.42 +/- 0.10 mag at [Fe/H] = -1.11 dex. We provide another luminosity calibration in the form of reddening-free Wasenheit functions. Comparison of our calibrations with predictions based on recent models combining stellar evolution and pulsation theories shows encouraging agreement. (Abridged)Comment: AASTeX, 29 pages including 5 figures. Complete photometry data and FITS-format images are available at http://physics.bgsu.edu/~layden/ASTRO/PUBL/published.html . Accepted for publication in the Astrophysical Journal, 2005 October 20. Replaced errant wording in last sentence of paragraph 4 of conclusion

    Interferometric Astrometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: Detection Limits for sub-Stellar Companions

    Get PDF
    We report on a sub-stellar companion search utilizing interferometric fringe-tracking astrometry acquired with Fine Guidance Sensor 3 (FGS 3) on the Hubble Space Telescope. Our targets were Proxima Centauri and Barnard's Star. We obtain absolute parallax values for Proxima Cen pi_{abs} = 0.7687 arcsecond and for Barnard's Star pi_{abs} = 0.5454 arcsecond. Once low-amplitude instrumental systematic errors are identified and removed, our companion detection sensitivity is less than or equal to one Jupiter mass for periods longer than 60 days for Proxima Cen. Between the astrometry and the radial velocity results we exclude all companions with M > 0.8M_{Jup} for the range of periods 1 < P < 1000 days. For Barnard's Star our companion detection sensitivity is less than or equal to one Jupiter mass for periods long er than 150 days. Our null results for Barnard's Star are consistent with those of Gatewood (1995).Comment: 35 pages, 13 figures, to appear in August 1999 A

    Photometry of Proxima Centauri and Barnard's Star Using HST Fine Guidance Sensor 3: A Search for Periodic Variations

    Get PDF
    We have observed Proxima Centauri and Barnard's Star with Hubble Space Telescope Fine Guidance Sensor 3. Proxima Centauri exhibits small-amplitude, periodic photometric variations. Once several sources of systematic photometric error are corrected, we obtain 2 milli-magnitude internal photometric precision. We identify two distinct behavior modes over the past four years: higher amplitude, longer period; smaller amplitude, shorter period. Within the errors one period (P ~ 83d) is twice the other. Barnard's Star shows very weak evidence for periodicity on a timescale of approximately 130 days. If we interpret these periodic phenomena as rotational modulation of star spots, we identify three discrete spots on Proxima Cen and possibly one spot on Barnard's Star. We find that the disturbances change significantly on time scales as short as one rotation period.Comment: 39 pages, 17 figure

    Revisiting the proposed planetary system orbiting the eclipsing polar HU Aquarii

    Get PDF
    It has recently been proposed, on the basis of eclipse-timing data, that the eclipsing polar cataclysmic variable HU Aquarii is host to at least two giant planets. However, that result has been called into question based upon the dynamical stability of the proposed planets. In this work, we present a detailed re-analysis of all eclipse timing data available for the HU Aquarii system, making use of standard techniques used to fit orbits to radial-velocity data. We find that the eclipse timings can be used to obtain a two-planet solution that does not require the presence of additional bodies within the system. We then perform a highly detailed dynamical analysis of the proposed planetary system. We show that the improved orbital parameters we have derived correspond to planets that are dynamically unstable on unfeasibly short timescales (of order 10^4 years or less). Given these results, we discuss briefly how the observed signal might in fact be the result of the intrinsic properties of the eclipsing polar, rather than being evidence of dynamically improbable planets. Taken in concert, our results highlight the need for caution in interpreting such timing variations as being planetary in nature.Comment: Accepted for publication in MNRA

    The Extrasolar Planet epsilon Eridani b - Orbit and Mass

    Full text link
    Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, \eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the \HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{\sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity

    Triage conducted by lay-staff and emergency training reduces paediatric mortality in the emergency department of a rural hospital in Northern Mozambique

    Get PDF
    Introduction The majority of emergency paediatric death in African countries occur within the first 24 h of admission. A coloured triage system is widely implemented in high-income countries and the emergency triage and assessment treatment (ETAT) is recommended by the World Health Organization, but not put into practice in Mozambique. We implemented a three-colour triage system in a rural district hospital with lay-staff workers conducting the first triage. Methods A retrospective, before and after, mortality analysis was performed using routine patient files from the district hospital between 2014 and 2017. The triage system was implemented in August 2016. Inclusion criteria were children under 15 years of age that entered the emergency centre. Primary outcome was child mortality rate. Secondary outcomes included the percentage agreement between the clinical and non-clinical staff and the duration from triage to first treatment. We used a negative binomial model in STATA 15 to compare mortality rates, and Kappa statistics to estimate the agreement between clinical and non-clinical staff. Results 4176 admissions were included. The mortality rate ratio (MMR) was 45% lower after the start of the intervention (2016; MRR = 0.55; 0.38, 0.81; p = 0.002), compared to before. To estimate the agreement between non-clinical and clinical staff, 548 (of the 671) patient files were included. The agreement was estimated at 88.7% (Kappa = 0.644; p < 0.001). The median waiting time decreased with urgency of the triage: 2 h33 for ‘green’/least serious (IQR 1 h58-3 h30), 21 min for yellow/serious (IQR 0 h10-0 h58) and nine minutes for ‘red’/urgent (IQR 2–40 min). Conclusion In a rural setting with nurse-led clinical care and non-clinician staff working at the triage reception, implementation of a three-coloured triage system was feasible. Triage and ETAT training was associated with a decrease of 45% of paediatric deaths. The impact on mortality, low cost, and ease of the implementation supports scaling this intervention in similar settings
    • …
    corecore