158 research outputs found

    Thermal Conductivity and Specific Heat of the Spin-Ice Compound Dy2_2Ti2_2O7_7: Experimental Evidence for Monopole Heat Transport

    Full text link
    Elementary excitations in the spin-ice compound Dy2_2Ti2_2O7_7 can be described as magnetic monopoles propagating independently within the pyrochlore lattice formed by magnetic Dy ions. We studied the magnetic-field dependence of the thermal conductivity {\kappa}(B) for B || [001] and observe clear evidence for magnetic heat transport originating from the monopole excitations. The magnetic contribution {\kappa}_{mag} is strongly field-dependent and correlates with the magnetization M(B). The diffusion coefficient obtained from the ratio of {\kappa}_{mag} and the magnetic specific heat is strongly enhanced below 1 K indicating a high mobility of the monopole excitations in the spin-ice state.Comment: 5 pages, 4 figure

    Importance of maintained atrio-ventricular synchrony in patients with pacemarkers

    Get PDF
    The effect of atrial contraction on cardiac function is reviewed in patients with dual chamber and rate-responsive ventricular pacemakers. The question posed was is there any haemodynamic, clinical or prognostic advantage of AV synchrony in dual chamber pacemakers in comparison to rate-responsive ventricular pacemakers? Optimal A V delay in dual chamber pacing favours cardiac performance at rest, while during exercise the increase in heart rate rather than A V synchrony influences cardiac performance and working capacity. However, there is little information on the benefit of maintained A V synchrony in patients' daily activities. Patients with pacemakers which maintain AV synchrony seem to have less morbidity and mortality than patients with ventricular stimulation alone, and there are comparable rates of complication in carriers of single and dual chamber pacemakers, the former showing problems with the pacemaker syndrome and the latter with atrial sensing and pacemaker-induced tachycardias. The disadvantage of dual chamber pacemakers are higher costs and time-consuming control

    Influence of coronary artery bypass grafting on ventricular late potentials as a predictive factor for ventricular arrhythmias during short- and long-term follow-up

    Get PDF
    Ventricular late potentials have been identified as a prognostic factor in the prediction of ventricular arrhythmias in patients after myocardial infarction. In this prospective study the possible impact of late potentials on the prediction of ventricular arrhythmias in the short- and long-term follow-up after coronary artery bypass grafting was evaluated. In 188 patients (165 men, 23 women, age 57 Β±8 years) with chronic coronary heart disease 48 (26%) had late potentials before bypass grafting; after the procedure this was reduced to 39 (21%) (ns). In 16 (33%) of the 48 patients with late potentials before bypass grafting, late potentials were no longer present in the short-term follow-up (9 Β±6 days). Conversely, seven (5%) of the 140 patients without late potentials before bypass grafting had late potentials in the short-term follow-up after grafting. Nine (19%) of the 48 patients with late potentials before bypass grafting had ventricular arrhythmias in the peri-operative phase, which had to be treated with antiarrhythmic agents. In contrast, only three (2%>) of the 140 patients without late potentials before bypass grafting had to be treated for ventricular arrhythmias (P<0.001). In the long-term follow-up of 29 Β± 3 months, there were no events in the group of 149 patients without late potentials after grafting. In the 39 patients with late potentials after grafting, there were two (5%) events (two patients with arrhythmic syncope). Conclusions (1) Patients with late potentials before bypass grafting have a markedly higher risk of developing serious ventricular arrhythmias in the peri-operative period than patients without late potentials. (2) Patients without late potentials have a very low risk of developing serious ventricular arrhythmias in the peri-operative period. (3) During long-term follow-up there was only a low probability of developing symptomatic ventricular arrhythmias in patients with or without late potential

    Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping

    Get PDF
    14 Pags. The definitive version, with tabls. and figs., is available at: http://www.sciencedirect.com/science/journal/01681699The joint use of satellite imagery and digital soil maps derived from soil sampling is investigated in the present paper with the goal of proposing site-specific management units (SSMU) within a commercial field plot. Very high resolution Quickbird imagery has been used to derive leaf area index (LAI) maps in maize canopies in two different years. Soil properties maps were obtained from the interpolation of ion concentrations (Na, Mg, Ca, K and P) and texture determined in soil samples and also from automatic readings of electromagnetic induction (EMI) readings taken with a mobile sensor. Links between the image-derived LAI and soil properties were established, making it possible to differentiate units within fields subject to abiotic stress associated with soil sodicity, a small water-holding capacity or flooding constraints. In accordance with the previous findings, the delineation of SSMUs is proposed, describing those field areas susceptible of variable-rate management for agricultural inputs such as water or fertilizing, or soil limitation correctors such as gypsum application in the case of sodicity problems. This demonstrates the suitability of spatial information technologies such as remote sensing and digital soil mapping in the context of precision agriculture.The Instituto Nacional de InvestigaciΓ³n y TecnologΓ­a Agraria y Alimentaria (INIA) funded the PhD grant of the first author. This work is a result of the project RTA2005-00230, funded by INIA. The contribution of the project AGL2009-08931/AGR is also recognized.Peer reviewe

    Reactivation from the Ni-B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster

    Get PDF
    The tolerance towards oxic conditions of O2-tolerant [NiFe] hydrogenases has been attributed to an unusual [4Fe–3S] cluster that lies proximal to the [NiFe] active site. Upon exposure to oxygen, this cluster converts to a superoxidised (5+) state, which is believed to secure the formation of the so-called Ni–B state that is rapidly reactivated under reducing conditions. Here, the reductive reactivation of the membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha in a native-like lipid membrane was characterised and compared to a variant that instead carries a typical [4Fe–4S] proximal cluster. Reactivation from the Ni–B state was faster in the [4Fe–4S] variant, suggesting that the reactivation rate in MBH is limited by the reduction of the superoxidised [4Fe–3S] cluster. We propose that the [4Fe–3S] cluster plays a major role in protecting MBH by blocking the reversal of electron transfer to the [NiFe] active site, which would produce damaging radical oxygen species

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    β€˜Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12Β Γ… apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Retinoic Acid Restores Adult Hippocampal Neurogenesis and Reverses Spatial Memory Deficit in Vitamin A Deprived Rats

    Get PDF
    A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function

    Experimental β€˜Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental β€˜jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Enhanced oxygen-tolerance of the full heterotrimeric membrane-bound [NiFe]-hydrogenase of ralstonia eutropha.

    Get PDF
    Hydrogenases are oxygen-sensitive enzymes that catalyze the conversion between protons and hydrogen. Water-soluble subcomplexes of membrane-bound [NiFe]-hydrogenases (MBH) have been extensively studied for applications in hydrogen-oxygen fuel cells as they are relatively tolerant to oxygen, although even these catalysts are still inactivated in oxidative conditions. Here, the full heterotrimeric MBH of Ralstonia eutropha, including the membrane-integral cytochrome b subunit, was investigated electrochemically using electrodes modified with planar tethered bilayer lipid membranes (tBLM). Cyclic voltammetry and chronoamperometry experiments show that MBH, in equilibrium with the quinone pool in the tBLM, does not anaerobically inactivate under oxidative redox conditions. In aerobic environments, the MBH is reversibly inactivated by O2, but reactivation was found to be fast even under oxidative redox conditions. This enhanced resistance to inactivation is ascribed to the oligomeric state of MBH in the lipid membrane
    • …
    corecore