20 research outputs found
Investigation of superstorm Sandy 2012 in a multi-disciplinary approach
At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States
Integrating omics to characterize ecoâphysiological adaptations: How moose diet and metabolism differ across biogeographic zones
1. With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in freeâranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.
2. Through a novel approach of combining DNAâmetabarcoding and nuclear magnetic resonance (NMR)âbased metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.
3. Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.
4. We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birchâ and willow/aspenârich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.
5. Our results show how the adaptive capacity of moose at the ecoâphysiological level varies over a large ecoâgeographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity
Investigation of superstorm Sandy 2012 in a multi-disciplinary approach
At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States
Small shrubs with large importance? Smaller deer may increase the moose-forestry conflict through feeding competition over Vaccinium shrubs in the field layer
The moose (Alces alces) is a dominant large mammalian herbivore in the world's boreal zones. Moose exert significant browsing impacts on forest vegetation and are therefore often at the centre of wildlife-forestry conflicts. Consequently, understanding the drivers of their foraging behaviour is crucial for mitigating such conflicts. Management of moose in large parts of its range currently largely ignores the fact that moose foraging is influenced by increasing populations of sympatric deer species. In such multispecies systems, resource partitioning may be driven by foraging height and bite size. Feeding competition with smaller species might replace larger species from the field layer and drive them towards higher foraging strata offering larger bites. This bite size hypothesis has been well documented for African ungulate communities. Based on a large diet DNA metabarcoding dataset we suggest that feeding competition from three smaller deer species (red deer Cervus elaphus, fallow deer Dama dama, and roe deer Capreolus capreolus) over Vaccinium shrubs in the forest field layer might drive moose towards increasing consumption of Scots pine (Pinus sylvestris) in Sweden. We found that in areas of high deer density, moose diets consistently contained less Vaccinium and higher proportions of pine over three spring periods. Utilization of these food items by the smaller deer species was either unaffected by deer density or, for Vaccinium showed the opposite pattern to moose, i.e., increases of proportions in the diet of roe and red deer with increasing deer density. Availability of pine and Vaccinium, measured as proportion of available bites, did not explain the observed patterns. Our results suggest that managing key food items like Vaccinium and the populations of smaller deer may play an important role in controlling browsing impacts of moose on pine
Large mammal telomere length variation across ecoregions
BACKGROUND: Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. RESULTS: We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. CONCLUSION: Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems
Small shrubs with large importance? Smaller deer may increase the moose-forestry conflict through feeding competition over Vaccinium shrubs in the field layer
The moose (Alces alces) is a dominant large mammalian herbivore in the worldâs boreal zones. Moose exert significant browsing impacts on forest vegetation and are therefore often at the centre of wildlife-forestry conflicts. Consequently, understanding the drivers of their foraging behaviour is crucial for mitigating such conflicts. Management of moose in large parts of its range currently largely ignores the fact that moose foraging is influenced by increasing populations of sympatric deer species. In such multispecies systems, resource partitioning may be driven by foraging height and bite size. Feeding competition with smaller species might replace larger species from the field layer and drive them towards higher foraging strata offering larger bites. This bite size hypothesis has been well documented for African ungulate communities. Based on a large diet DNA metabarcoding dataset we suggest that feeding competition from three smaller deer species (red deer Cervus elaphus, fallow deer Dama dama, and roe deer Capreolus capreolus) over Vaccinium shrubs in the forest field layer might drive moose towards increasing consumption of Scots pine (Pinus sylvestris) in Sweden. We found that in areas of high deer density, moose diets consistently contained less Vaccinium and higher proportions of pine over three spring periods. Utilization of these food items by the smaller deer species was either unaffected by deer density or, for Vaccinium showed the opposite pattern to moose, i.e., increases of proportions in the diet of roe and red deer with increasing deer density. Availability of pine and Vaccinium, measured as proportion of available bites, did not explain the observed patterns. Our results suggest that managing key food items like Vaccinium and the populations of smaller deer may play an important role in controlling browsing impacts of moose on pine
Small shrubs with large importance? Smaller deer may increase the moose-forestry conflict through feeding competition over Vaccinium shrubs in the field layer
The moose (Alces alces) is a dominant large mammalian herbivore in the worldâs boreal zones. Moose exert significant browsing impacts on forest vegetation and are therefore often at the centre of wildlife-forestry conflicts. Consequently, understanding the drivers of their foraging behaviour is crucial for mitigating such conflicts. Management of moose in large parts of its range currently largely ignores the fact that moose foraging is influenced by increasing populations of sympatric deer species. In such multispecies systems, resource partitioning may be driven by foraging height and bite size. Feeding competition with smaller species might replace larger species from the field layer and drive them towards higher foraging strata offering larger bites. This bite size hypothesis has been well documented for African ungulate communities. Based on a large diet DNA metabarcoding dataset we suggest that feeding competition from three smaller deer species (red deer Cervus elaphus, fallow deer Dama dama, and roe deer Capreolus capreolus) over Vaccinium shrubs in the forest field layer might drive moose towards increasing consumption of Scots pine (Pinus sylvestris) in Sweden. We found that in areas of high deer density, moose diets consistently contained less Vaccinium and higher proportions of pine over three spring periods. Utilization of these food items by the smaller deer species was either unaffected by deer density or, for Vaccinium showed the opposite pattern to moose, i.e., increases of proportions in the diet of roe and red deer with increasing deer density. Availability of pine and Vaccinium, measured as proportion of available bites, did not explain the observed patterns. Our results suggest that managing key food items like Vaccinium and the populations of smaller deer may play an important role in controlling browsing impacts of moose on pine