189 research outputs found

    The Filter Detection Task for measurement of breathing-related interoception and metacognition

    Get PDF
    The study of the brain’s processing of sensory inputs from within the body (‘interoception’) has been gaining rapid popularity in neuroscience, where interoceptive disturbances are thought to exist across a wide range of chronic physiological and psychological conditions. Here we present a task and analysis procedure to quantify specific dimensions of breathing-related interoception, including interoceptive sensitivity, decision bias, metacognitive bias, and metacognitive performance. Two major developments address some of the challenges presented by low trial numbers in interoceptive experiments: (i) a novel adaptive algorithm to maintain task performance at 70–75% accuracy; (ii) an extended hierarchical metacognitive model to estimate regression parameters linking metacognitive performance to relevant (e.g. clinical) variables. We demonstrate the utility of the task and analysis developments, using both simulated data and three empirical datasets. This methodology represents an important step towards accurately quantifying interoceptive dimensions from a simple experimental procedure that is compatible with clinical settings

    Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys

    Get PDF
    The Disk Detective citizen science project aims to find new stars with excess 22 m emission from circumstellar dust in the All WISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0 1512 separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most7.9%0.2% of All WISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positiverates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these,213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 m excess around two known members of the ScorpiusCentaurus association, and we identifyknown disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates arecloser than 125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanetsearches

    Metabolic constraints on the recovery of sensitivity after visual pigment bleaching in retinal rods

    Get PDF
    The shutoff of active intermediates in the phototransduction cascade and the reconstitution of the visual pigment play key roles in the recovery of sensitivity after the exposure to bright light in both rod and cone photoreceptors. Physiological evidence from bleached salamander rods suggests this recovery of sensitivity occurs faster at the outer segment base compared with the tip. Microfluorometric measurements of similarly bleached salamander rods demonstrate that the reduction of all-trans retinal to all-trans retinol also occurs more rapidly at the outer segment base than at the tip. The experiments reported here were designed to test the hypothesis that these two phenomena are linked, e.g., that slowed recovery of sensitivity at the tip of outer segments is rate limited by the reduction of all-trans retinal and results from a shortage of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH), the reducing agent for all-trans retinal reduction. Extracellular measurements of membrane current and sensitivity were made from isolated salamander rods under dark-adapted and bleached conditions while intracellular NADPH concentration was varied by dialysis from a micropipette attached to the inner segment. Sensitivity at the base and tip of the outer segment was assessed before and after bleaching. After exposure to a light that photoactivates 50% of the visual pigment, rods were completely insensitive for nearly 10 minutes, after which the base recovered sensitivity and responsiveness with a time constant of ∼200 seconds, but tip sensitivity recovered more slowly with a time constant of ∼680 seconds. Dialysis of 5 mM NADPH into the rod promoted an earlier recovery and eliminated the previously observed tip/base difference. Dialysis of 1.66 mM NADPH failed to eliminate the tip/base recovery difference, suggesting the steady-state NADPH concentration in rods is ∼1 mM. These results indicate the inner segment is the primary source of reducing equivalents after pigment bleaching, with the reduction of all-trans retinal to all-trans retinol playing a key step in the recovery of sensitivity

    The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity

    Get PDF
    Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure

    Autophagy and Exosomes in the Aged Retinal Pigment Epithelium: Possible Relevance to Drusen Formation and Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly

    Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Get PDF
    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes

    Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys

    Get PDF
    The Disk Detective citizen science project aims to find new stars with excess 22 μm emission from circumstellar dust in the AllWISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0.″15-12″ separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most 7.9% ± 0.2% of AllWISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positive rates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3 are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these, 213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 μm excess around two known members of the Scorpius-Centaurus association, and we identify known disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates are closer than ∼125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanet searches
    corecore