89 research outputs found

    Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat

    Get PDF
    This study aims to investigate whether orexigenic antipsychotic drugs may induce dyslipidemia and glucose disturbances in female rats through direct perturbation of metabolically active peripheral tissues, independent of prior weight gain. Methods In the current study, we examined whether a single intraperitoneal injection of clozapine or olanzapine induced metabolic disturbances in adult female outbred Sprague–Dawley rats. Serum glucose and lipid parameters were measured during time-course experiments up to 48 h. Real-time quantitative PCR was used to measure specific transcriptional alterations in lipid and carbohydrate metabolism in adipose tissue depots or in the liver. Results Our results demonstrated that acute administration of clozapine or olanzapine induced a rapid, robust elevation of free fatty acids and glucose in serum, followed by hepatic accumulation of lipids evident after 12–24 h. These metabolic disturbances were associated with biphasic patterns of gluconeogenic and lipid-related gene expression in the liver and in white adipose tissue depots. Conclusion Our results support that clozapine and olanzapine are associated with primary effects on carbohydrate and lipid metabolism associated with transcriptional changes in metabolically active peripheral tissues prior to the development of drug-induced weight gain

    Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan

    Get PDF
    INTRODUCTION: Although breast carcinoma (BC) is the most common malignancy affecting Jordanian females and the affected population in Jordan is younger than that in the West, no information is available on its biological characteristics. Our aims in this study are to evaluate the expression of estrogen receptor (ER) and progesterone receptor (PR) and Her-2/neu overexpression in BC in Jordan, and to compare the expression of these with other prognostic parameters for BC such as histological type, histological grade, tumor size, patients' age, and number of lymph node metastases. METHOD: This is a retrospective study conducted in the Department of Pathology at Jordan University of Science and Technology. A confirmed 91 cases of BC diagnosed in the period 1995 to 1998 were reviewed and graded. We used immunohistochemistry to evaluate the expression of ER, PR, and Her-2. Immunohistochemical findings were correlated with age, tumor size, grade and axillary lymph node status. RESULTS: Her-2 was overexpressed in 24% of the cases. The mean age of Her-2 positive cases was 42 years as opposed to 53 years among Her-2 negative cases (p = 0.0001). Her-2 expression was inversely related to ER and PR expression. Her-2 positive tumors tended to be larger than Her-2 negative tumors with 35% overexpression among T3 tumors as opposed to 22% among T2 tumors (p = 0.13). Her-2 positive cases tended to have higher rates of axillary metastases, but this did not reach statistical significance. ER and PR positive cases were seen in older patients with smaller tumor sizes. CONCLUSION: Her-2 overexpression was seen in 24% of BC affecting Jordanian females. Her-2 overexpression was associated with young age at presentation, larger tumor size, and was inversely related to ER and PR expression. One-fifth of the carcinomas were Her-2 positive and ER negative. This group appears to represent an aggressive form of BC presenting at a young age with large primary tumors and a high rate of four or more axillary lymph node metastases

    Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: Marked differences between various antipsychotic drugs

    Get PDF
    BACKGROUND: The etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP) transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1) in four CNS-relevant human cell lines. RESULTS: There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells. CONCLUSION: Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs

    Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation

    Get PDF
    The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance

    CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes.</p> <p>Methods</p> <p>We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA.</p> <p>Results</p> <p>Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44<sup>+</sup>/CD24<it><sup>- </sup></it>phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival.</p> <p>Conclusions</p> <p>We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to CSCs and tumor progression should consider the expression of various CD44 isoforms.</p

    Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study

    Get PDF
    BACKGROUND: Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood. METHODS: We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women. RESULTS: HRT use in patients with estrogen receptor (ER) protein positive tumors (n = 72) was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen. CONCLUSION: Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells

    Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p
    corecore