212 research outputs found

    Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research

    Get PDF
    Following on from the NASA twins’ study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research

    Astrometric calibration and performance of the Dark Energy Camera

    Get PDF
    We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and across 4 years of operation. This is done using internal comparisons of ~4x10^7 measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to ~10 um when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for 30 s exposures) with 1 arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane, plus the stochastic atmospheric distortion.Comment: Submitted to PAS

    Observation and Confirmation of Nine Strong Lensing Systems in Dark Energy Survey Year 1 Data

    Get PDF
    We describe the observation and confirmation of nine new strong gravitational lenses discovered in Year 1 data from the Dark Energy Survey (DES). We created candidate lists based on a) galaxy group and cluster samples and b) photometrically selected galaxy samples. We selected 46 candidates through visual inspection and then used the Gemini Multi-Object Spectrograph (GMOS) at the Gemini South telescope to acquire spectroscopic follow-up of 21 of these candidates. Through analysis of this spectroscopic follow-up data, we confirmed nine new lensing systems and rejected two candidates, but the analysis was inconclusive on 10 candidates. For each of the confirmed systems, we report measured spectroscopic properties, estimated source image-lens separation, and estimated enclosed masses. The sources that we targeted have an i-band surface brightness range of iSB ∼ 22 − 24 mag/arcsec2 and a spectroscopic redshift range of zspec ∼ 0.8 − 2.6. The lens galaxies have a photometric redshift range of zlens ∼ 0.3 − 0.7. The lensing systems range in source image-lens separation 2 − 9″ and in enclosed mass 1012 − 1013M⊙

    Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.</p> <p>Methods</p> <p>Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.</p> <p>Results</p> <p>Significant group differences were found for all MUP variables and for MU firing rate (<it>p</it> < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (<it>p </it>< 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (<it>p </it>< 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (<it>p </it>< 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (<it>p </it>< 0.006).</p> <p>Conclusion</p> <p>The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.</p

    Synchronous Rotation in the (136199) Eris–Dysnomia System

    Get PDF
    We combine photometry of Eris from a 6 month campaign on the Palomar 60 inch telescope in 2015, a 1 month Hubble Space Telescope WFC3 campaign in 2018, and Dark Energy Survey data spanning 2013–2018 to determine a light curve of definitive period 15.771 ± 0.008 days (1σ formal uncertainties), with nearly sinusoidal shape and peak-to-peak flux variation of 3%. This is consistent at part-per-thousand precision with the P = 15.785 90 ± 0.00005 day sidereal period of Dysnomia's orbit around Eris, strengthening the recent detection of synchronous rotation of Eris by Szakáts et al. with independent data. Photometry from Gaia are consistent with the same light curve. We detect a slope of 0.05 ± 0.01 mag per degree of Eris's brightness with respect to illumination phase averaged across g, V, and r bands, intermediate between Pluto's and Charon's values. Variations of 0.3 mag are detected in Dysnomia's brightness, plausibly consistent with a double-peaked light curve at the synchronous period. The synchronous rotation of Eris is consistent with simple tidal models initiated with a giant-impact origin of the binary, but is difficult to reconcile with gravitational capture of Dysnomia by Eris. The high albedo contrast between Eris and Dysnomia remains unexplained in the giant-impact scenario

    Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data

    Full text link
    We combine Dark Energy Survey Year 1 clustering and weak lensing data with baryon acoustic oscillations and Big Bang nucleosynthesis experiments to constrain the Hubble constant. Assuming a flat ΛCDM model with minimal neutrino mass (Σm υ = 0.06 eV), we find H 0 = 67.4 -1.2+1.1 km s -1 Mpc -1 (68 per cent CL). This result is completely independent of Hubble constant measurements based on the distance ladder, cosmic microwave background anisotropies (both temperature and polarization), and strong lensing constraints. There are now five data sets that: (a) have no shared observational systematics; and (b) each constrains the Hubble constant with fractional uncertainty at the few percent level. We compare these five independent estimates, and find that, as a set, the differences between them are significant at the 2.5σ level (χ 2 /dof = 24/11, probability to exceed = 1.1 per cent). Having set the threshold for consistency at 3σ, we combine all five data sets to arrive at H 0 = 69.3 -0.6+0.4 km s -1 Mpc -

    Joint analysis of galaxy-galaxy lensing and galaxy clustering: methodology and forecasts for dark energy survey

    Get PDF
    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties

    A search for faint resolved galaxies beyond the Milky Way in DES Year 6: A new faint, diffuse dwarf satellite of NGC 55

    Full text link
    We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full six years of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to MVM_V ~ (7,10)(-7, -10) mag for galaxies at D=(0.3,2.0)D = (0.3, 2.0) Mpc respectively. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of 2.2+0.050.122.2\substack{+0.05\\-0.12} Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 4747 arcmin (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of 8.0+0.50.3-8.0\substack{+0.5\\-0.3} mag and an azimuthally averaged physical half-light radius of 2.2+0.50.42.2\substack{+0.5\\-0.4} kpc, making this one of the lowest surface brightness galaxies ever found with μ=32.3\mu = 32.3 mag arcsec2{\rm arcsec}^{-2}. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.Comment: 20 pages, 7 figure
    corecore