25,829 research outputs found

    Transport in gapped bilayer graphene: the role of potential fluctuations

    Full text link
    We employ a dual-gated geometry to control the band gap \Delta in bilayer graphene and study the temperature dependence of the resistance at the charge neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by two thermally activated processes in different temperature regimes and exhibits exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the experimental observations, which highlights the crucial role of localized states produced by potential fluctuations. The high temperature conduction is attributed to thermal activation to the mobility edge. The activation energy approaches \Delta /2 at large band gap. At intermediate and low temperatures, the dominant conduction mechanisms are nearest neighbor hopping and variable-range hopping through localized states. Our systematic study provides a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com

    Isospin breaking and f0(980)f_0(980)-a0(980)a_0(980) mixing in the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) reaction

    Get PDF
    We make a theoretical study of the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) and η(1405)π0a0(980)\eta(1405) \to \pi^{0} a_0(980) reactions with an aim to determine the isospin violation and the mixing of the f0(980)f_0(980) and a0(980)a_0(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f0(980)f_0(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f0(980)f_0(980) and a0(980)a_0(980) mixing, assuming constant vertices for the primary η(1405)π0KKˉ\eta(1405)\rightarrow \pi^{0}K\bar{K} and η(1405)π0π0η\eta(1405)\rightarrow \pi^{0}\pi^{0}\eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I=1 mixture in the η(1405)\eta(1405) wave function, but this leads to a much bigger width of the f0(980)f_0(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by ηKKˉ\eta' \to K^* \bar K followed by KKπK^* \to K \pi, which induces an extra singularity in the loop functions needed to produce the f0(980)f_0(980) and a0(980)a_0(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Γ(π0,π+π)/Γ(π0,π0η)\Gamma(\pi^0, \pi^+ \pi^-)/\Gamma(\pi^0, \pi^0 \eta) which are in fair agreement with experiment. We also show that the same results hold if we had the η(1475)\eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment

    Graphene nanoring as a tunable source of polarized electrons

    Get PDF
    We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be controlled by a side-gate voltage. This opens the possibility to use the proposed device as a tunable source of polarized electrons.Comment: 12 pages, 7 figures, accepted in Nanotechnolog

    Power-laws in recurrence networks from dynamical systems

    Full text link
    Recurrence networks are a novel tool of nonlinear time series analysis allowing the characterisation of higher-order geometric properties of complex dynamical systems based on recurrences in phase space, which are a fundamental concept in classical mechanics. In this Letter, we demonstrate that recurrence networks obtained from various deterministic model systems as well as experimental data naturally display power-law degree distributions with scaling exponents γ\gamma that can be derived exclusively from the systems' invariant densities. For one-dimensional maps, we show analytically that γ\gamma is not related to the fractal dimension. For continuous systems, we find two distinct types of behaviour: power-laws with an exponent γ\gamma depending on a suitable notion of local dimension, and such with fixed γ=1\gamma=1.Comment: 6 pages, 7 figure

    Optoelectronic oscillator for 5G wireless networks and beyond

    Get PDF
    With the development of 5G wireless network and beyond, the wireless carrier frequency will definitely reach millimeter-wave (mm-wave) and even terahertz (THz). As one of the key elements in wireless networks, the local oscillator (LO) needs to operate at mm-wave and THz band with lower phase noise, which becomes a major challenge for commercial LOs. In this article, we investigate the recent developments of the electronic integrated circuit (EIC) oscillator and the optoelectronic oscillator (OEO), and especially investigate the prospect of OEO serving as a qualified LO in the 5G wireless network and beyond. Both the EIC oscillators and OEOs are investigated, including their basic theories of operation, representative techniques and some milestones in applications. Then, we compare the performances between the EIC oscillators and the OEOs in terms of frequency accuracy, phase noise, power consumption and cost. After describing the specific requirements of LO based on the standard of 5G and 6G wireless communication systems, we introduce an injection-locked OEO architecture which can be implemented to distribute and synchronize LOs. The OEO has better phase noise performance at high frequency, which is greatly desired for LO in 5G wireless network and beyond. Besides, the OEO provides an easy and low-loss method to distribute and synchronize mm-wave and THz LOs. Thanks to photonic integrated circuit development, the power consumption and cost of OEO reduce gradually. It is foreseeable that the integrated OEO with lower cost may have a promising prospect in the 5G wireless network and beyond
    corecore