39,803 research outputs found

    Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse

    Full text link
    With a semiclassical quasi-static model we achieve an insight into the complex dynamics of two correlated electrons under the combined influence of a two-center Coulomb potential and an intense laser field. The model calculation is able to reproduce experimental data of nitrogen molecules for a wide range of laser intensities from tunnelling to over-the-barrier regime, and predicts a significant alignment effect on the ratio of double over single ion yield. The classical trajectory analysis allows to unveil sub-cycle molecular double ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007

    Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses

    Full text link
    In the present paper, we develop a semiclassical quasi-static model accounting for molecular double ionization in an intense laser pulse. With this model, we achieve insight into the dynamics of two highly-correlated valence electrons under the combined influence of a two-center Coulomb potential and an intense laser field, and reveal the significant influence of molecular alignment on the ratio of double over single ion yield. Analysis on the classical trajectories unveils sub-cycle dynamics of the molecular double ionization. Many interesting features, such as the accumulation of emitted electrons in the first and third quadrants of parallel momentum plane, the regular pattern of correlated momentum with respect to the time delay between closest collision and ionization moment, are revealed and successfully explained by back analyzing the classical trajectories. Quantitative agreement with experimental data over a wide range of laser intensities from tunneling to over-the-barrier regime is presented.Comment: 8 pages, 9 figure

    Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential

    Full text link
    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non- Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and ex- plore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase tran- sition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops

    Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

    Full text link
    We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 μ\mu Hz level.Comment: 5 pages, 4 figure

    Magneto-quantum oscillations of the conductance of a tunnel point-contact in the presence of a single defect

    Get PDF
    The influence of a quantizing magnetic field HH to the conductance of a tunnel point contact in the presence of the single defect has been considered. We demonstrate that the conductance exhibits specific magneto-quantum oscillations, the amplitude and period of which depend on the distance between the contact and the defect. We show that a non-monotonic dependence of the point-contact conductance results from a superposition of two types of oscillations: A short period oscillation arising from electron focusing by the field HH and a long period oscillation of Aharonov-Bohm-type originated from the magnetic flux passing through the closed trajectories of electrons moving from the contact to the defect and returning back to the contact.Comment: 13 pages, 3 figure

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201
    corecore