39,803 research outputs found
Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse
With a semiclassical quasi-static model we achieve an insight into the
complex dynamics of two correlated electrons under the combined influence of a
two-center Coulomb potential and an intense laser field. The model calculation
is able to reproduce experimental data of nitrogen molecules for a wide range
of laser intensities from tunnelling to over-the-barrier regime, and predicts a
significant alignment effect on the ratio of double over single ion yield. The
classical trajectory analysis allows to unveil sub-cycle molecular double
ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007
Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses
In the present paper, we develop a semiclassical quasi-static model
accounting for molecular double ionization in an intense laser pulse. With this
model, we achieve insight into the dynamics of two highly-correlated valence
electrons under the combined influence of a two-center Coulomb potential and an
intense laser field, and reveal the significant influence of molecular
alignment on the ratio of double over single ion yield. Analysis on the
classical trajectories unveils sub-cycle dynamics of the molecular double
ionization. Many interesting features, such as the accumulation of emitted
electrons in the first and third quadrants of parallel momentum plane, the
regular pattern of correlated momentum with respect to the time delay between
closest collision and ionization moment, are revealed and successfully
explained by back analyzing the classical trajectories. Quantitative agreement
with experimental data over a wide range of laser intensities from tunneling to
over-the-barrier regime is presented.Comment: 8 pages, 9 figure
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization
We explore the potential of direct spectroscopy of ultra-narrow optical
transitions of atoms localized in an optical cavity. In contrast to
stabilization against a reference cavity, which is the approach currently used
for the most highly stabilized lasers, stabilization against an atomic
transition does not suffer from Brownian thermal noise. Spectroscopy of
ultra-narrow optical transitions in a cavity operates in a very highly
saturated regime in which non-linear effects such as bistability play an
important role. From the universal behavior of the Jaynes-Cummings model with
dissipation, we derive the fundamental limits for laser stabilization using
direct spectroscopy of ultra-narrow atomic lines. We find that with current
lattice clock experiments, laser linewidths of about 1 mHz can be achieved in
principle, and the ultimate limitations of this technique are at the 1 Hz
level.Comment: 5 pages, 4 figure
Recommended from our members
Evaluation of ECMWF medium-range ensemble forecasts of precipitation for river basins
Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF's medium-range ensemble forecasts of precipitation over the period 1 January 2008 to 30 September 2012 on a selected midlatitude large-scale river basin, the Huai river basin (ca. 270 000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology
Magneto-quantum oscillations of the conductance of a tunnel point-contact in the presence of a single defect
The influence of a quantizing magnetic field to the conductance of a
tunnel point contact in the presence of the single defect has been considered.
We demonstrate that the conductance exhibits specific magneto-quantum
oscillations, the amplitude and period of which depend on the distance between
the contact and the defect. We show that a non-monotonic dependence of the
point-contact conductance results from a superposition of two types of
oscillations: A short period oscillation arising from electron focusing by the
field and a long period oscillation of Aharonov-Bohm-type originated from
the magnetic flux passing through the closed trajectories of electrons moving
from the contact to the defect and returning back to the contact.Comment: 13 pages, 3 figure
A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs
Sorting is at the core of many database operations, such as index creation,
sort-merge joins, and user-requested output sorting. As GPUs are emerging as a
promising platform to accelerate various operations, sorting on GPUs becomes a
viable endeavour. Over the past few years, several improvements have been
proposed for sorting on GPUs, leading to the first radix sort implementations
that achieve a sorting rate of over one billion 32-bit keys per second. Yet,
state-of-the-art approaches are heavily memory bandwidth-bound, as they require
substantially more memory transfers than their CPU-based counterparts.
Our work proposes a novel approach that almost halves the amount of memory
transfers and, therefore, considerably lifts the memory bandwidth limitation.
Being able to sort two gigabytes of eight-byte records in as little as 50
milliseconds, our approach achieves a 2.32-fold improvement over the
state-of-the-art GPU-based radix sort for uniform distributions, sustaining a
minimum speed-up of no less than a factor of 1.66 for skewed distributions.
To address inputs that either do not reside on the GPU or exceed the
available device memory, we build on our efficient GPU sorting approach with a
pipelined heterogeneous sorting algorithm that mitigates the overhead
associated with PCIe data transfers. Comparing the end-to-end sorting
performance to the state-of-the-art CPU-based radix sort running 16 threads,
our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for
sorting 64 GB key-value pairs with a skewed and a uniform distribution,
respectively.Comment: 16 pages, accepted at SIGMOD 201
- …