5,765 research outputs found
Trace element geochemistry of peridotites from the Izu-Bonin-Mariana Forearc, Leg 125
Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction.
Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed
Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature
We determine the spectra of a class of quantum spin chains of Temperley-Lieb
type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ
chain as a reference system. We consider open boundary conditions and in
particular periodic boundary conditions. For both types of boundaries the
identification with XXZ spectra is performed within isomorphic representations
of the underlying Temperley-Lieb algebra. For open boundaries the spectra of
these models differ from the spectrum of the associated XXZ chain only in the
multiplicities of the eigenvalues. The periodic case is rather different. Here
we show how the spectrum is obtained sector-wise from the spectra of globally
twisted XXZ chains. As a spin-off, we obtain a compact formula for the
degeneracy of the momentum operator eigenvalues. Our representation theoretical
results allow for the study of the thermodynamics by establishing a
TL-equivalence at finite temperature and finite field.Comment: 29 pages, LaTeX, two references added, redundant figures remove
Antarctic Sea Ice variations 1973 - 1975
Variations in the extent and concentration of sea ice cover on the Southern Ocean are described for the three-year period 1973-75 using information derived from the Nimbus-5 passive microwave imager
Complete phase diagram of the spin-1/2 -- model (with ) on the honeycomb lattice
We use the coupled cluster method to investigate the ground-state (GS)
properties of the frustrated spin-1/2 -- model on the
honeycomb lattice, with nearest-neighbor exchange coupling plus
next-nearest-neighbor () and next-next-nearest-neighbor () exchanges
of equal strength. In particular we find a direct first-order phase transition
between the N\'eel-ordered antiferromagnetic phase and the ferromagnetic phase
at a value when , compared to the
corresponding classical value of -1. We find no evidence for any intermediate
phase. From this and our previous CCM studies of the model we present its full
zero-temperature GS phase diagram.Comment: 4 pages, 4 figure
Spinful bosons in an optical lattice
We analyze the behavior of cold spin-1 particles with antiferromagnetic
interactions in a one-dimensional optical lattice using density matrix
renormalization group calculations. Correlation functions and the dimerization
are shown and we also present results for the energy gap between ground state
and the spin excited states. We confirm the anticipated phase diagram, with
Mott-insulating regions of alternating dimerized S=1 chains for odd particle
density versus on-site singlets for even density. We find no evidence for any
additional ordered phases in the physically accessible region, however for
sufficiently large spin interaction, on-site singlet pairs dominate leading,
for odd density, to a breakdown of the Mott insulator or, for even density, a
real-space singlet superfluid.Comment: Minor revisions and clarification
- …