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Summary. We extend the domain of applicability of the coupled-cluster method 
(CCM) to include quantum-mechanical spin-½ systems on discrete lattices. We 
study the specific case of anisotropic antiferromagnetic interactions described by 
the nearest-neighbour XXZ-model Hamiltonian. The isotropic version of this 
model on a two-dimensional (2-d) square lattice is of great current interest as a 
possible description of the interactions between the electrons in the singly-occu- 
pied dx2_y2 orbitals on the copper atoms in the ceramic copper oxide materials 
displaying high-temperature superconductivity. Although very few exact results 
are known for the 2-d XXZ-model, its 1-d counterpart has been exactly solved 
by Bethe-ansatz techniques, and we therefore use it here as a benchmark for our 
new CCM techniques. Even starting with the classical N6el state as the model 
reference state, we find that the CCM is capable at relatively low levels of 
truncation of giving accurate values for the ground-state energies. In this regard, 
we discuss several new CCM truncation hierarchies which~have not previously 
been applied to either atoms and molecules or continuous extended systems. 
Furthermore, the method gives a good qualitative description of most of the 
known or anticipated behaviour of the correlation functions, order parameters, 
and elementary excitations over an entire (zero-temperature) phase, right up to 
the transition point, as the anisotropy is varied. 

Key words: Coupled cluster method-  Quantum spin lattice models-  XXZ- 
model Hamiltonian - Low-dimensional anisotropic quantum antiferromagnets - 
Phase transitions - Calculation of staggered magnetization and correlation func- 
tions - Ground states and excited states 

1. Introduction 

The recent discovery by Bednorz and M/iller [1] of the first of what has since 
become a larger class of ceramic materials displaying high-temperature supercon- 
ductivity, has brought about a huge resurgence of interest in models that 
describe strongly correlated electronic systems. For example, two such different 
models have been specifically suggested by Anderson [2] for their potential 
relevance in this context. 
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The first of these is the well-known Hubbard model [3], which is a lattice 
electron model containing two terms, namely a simple single-electron hopping 
term between lattice sites, and a second term in which the long-range Coulomb 
interaction potential is replaced by an on-site delta-function type of interaction 
which allows the electrons to interact only when on the same site• Anderson [2] 
has suggested that the non-Fermi liquid behaviour away from half-filling on a 
two-dimensional (2-d) lattice might be at the heart of high-temperature super- 
conductivity• In particular, he has proposed the concept of resonating-valence 
bond states in which the many-body system is viewed as a bosonic fluid of singlet 
or triplet pairs of fermions bound to a lattice [2, 4]. Other similar studies [5, 6] 
have been based on the alternative hypothesis that the superconducting ground 
state may be generated instead by the electrons themselves condensing onto the 
2-d lattice and carrying spontaneous orbital currents• 

A second suggestion of Anderson [2] for a lattice model of relevance to 
high-temperature superconductivity is that of the 2-d spin -1 Heisenberg quantum 
antiferromagnet, which comprises the usual isotropic (quadratic) spin-spin inter- 
actions between nearest-neighbo~ar electrons on a square lattice. The physical 
hypothesis here is that this model may provide a description of the interactions 
between the electrons in the singly-occupied dx2_y2 orbitals on the copper atoms• 

In view of the possible practical importance of such above models as those of 
Hubbard and Heisenberg, it is therefore particularly timely to attempt to study 
them at a fundamental microscopic level• Furthermore, the last decade or so has 
seen the development and use of a number of extremely powerful many-body 
methods, which are now available to explore from first principles the structure 
and dynamic behaviour of strongly correlated quantum systems [7]• At the 
forefront amongst these methods in terms of both universality of applicability 
and accuracy are the coupled cluster method (CCM) [7-15, and see other 
articles in this volume] which is already well known in quantum chemistry, and 
the method of correlated basis functions (CBF) [16-26], which aims systemati- 
cally to extend and improve upon the variational calculations based on trial 
correlated wavefunctions of the Bijl-Jastrow type [27]. 

More recently, the diagrammatic parquet (or planar) theory approach [28- 
31] has also been developed to the point where it holds out much promise. This 
method focuses on the effective two-body interaction and expresses it in terms of 
a sum of a large and physically interesting class of Feynman diagrams, namely 
the parquet diagrams, which comprise a particular self-consistent sum of ring, 
ladder, and vertex correction diagrams for the two-body Green's function• 
Nevertheless, this planar method has not yet achieved anything like the number 
of applications that either the CCM (and see other articles in this volume) or the 
CBF approach has. 

Much of the earlier work on both the CCM and the CBF method has been 
concerned with the equilibrium properties of such 'standard' and archetypal 
quantum fluids as the helium liquids, the electron gas (or jellium), and nuclear 
matter. Of course, the CCM is also particularly well known to quantum chemists 
for many extremely accurate calculations of the ground-state energies and other 
properties of a wide selection of atoms and molecules. 

Despite what, particularly for the CCM, is now the very large number of 
successful applications of these methods to a wide diversity of condensed matter 
and other systems of chemical and physical interest, only relatively few applica- 
tions have to date been made to study the dynamics of lattice Hamiltonians. 
These latter are of importance not only in solid-state physics (e.g., the Hubbard 
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and Anderson models of strongly correlated electrons, and the Heinsenberg and 
other models of ferromagnets and antiferromagnets), but also within the context 
of lattice gauge models for such lattice gauge field theories as quantum electro- 
dynamics (QED) and quantum chromodynamics (QCD). 

Within the last two years the CBF method has already begun to be applied 
to both the lattice Hubbard model [32, 33] and to the U( 1)3 lattice gauge model 
of QED [34] in which the electromagnetic field is defined on the links and 
plaquettes of a 2-d square lattice. Similarly, the CCM has also recently been 
applied by Paldus and his coworkers [35, 36] to the homologous series of cyclic 
polyenes [37] CNH~v, with N =4n + 2  and n = 1, 2 . . . .  , which assures the 
nondegenerate closed-shell character of their ground states. They have studied 
these one-dimensional (ring) systems both via the simple model Hubbard Hamil- 
tonian described above, and via its more sophisticated counterpart, the Pariser- 
Parr-Pople Hamiltonian [38], which gives a much more realistic description of 
the long-range nature of the interelectronic Coulomb repulsion. For N--* oo 
these systems are also of. interest in the context of solid-state physics, where they 
model both 1-d metals with a half-filled band and, in the case of bond-length 
alternation, semiconductors. Finally, Roger and Hetherington [39] have very 
recently also pioneered the application of the CCM to spin lattice systems. Their 
main interest was in the solid phase of 3He, but they also demonstrated the 
efficacy of the method for calculating the ground-state energy of the isotropic 
Heisenberg antiferromagnets in 1-d and 2-d. 

Our main purpose in the present paper is to undertake a much more detailed 
CCM study of these quantum antiferromagnetic systems. In particular, we 
introduce an anisotropy into the interaction, and study the (zero-temperature) 
phase transitions with respect to the anisotropy parameter. Furthermore, we 
study other ground-state properties and correlation functions and excitation 
energies as well as the ground-state energy itself. One of our main findings is that 
not only does the CCM give good quantitative descriptions of these quantities 
over an entire antiferromagnetic phase, but it also gives a qualitatively correct 
description of the phase change itself as the anisotropy is varied. 

Although, as we have indicated above, much of the recent upsurge in interest 
in lattice models has been in 2-d, in connection with the planar structures 
deemed to be of relevance to high-temperature superconductivity, it is neverthe- 
less useful, for several reasons, for us to consider 1-d models initially in our 
attempt to apply CCM techniques to them. In the first place, 1-d models of many 
different phenomena have a long history of study by theoretical physicists and 
chemists (and see, e.g., Refs. [40-49]), and hence there are many results with 
which to compare. Some of the basic motivations behind such theoretical studies 
are described below. 

Secondly, various such 1-d chain models have the great theoretical advantage 
of exact integrability. They may therefore be used as known benchmarks against 
which to test the results from such more general microscopic methods as the 
CCM. Many of these 1-d integrable models have been solved by Bethe-ansatz 
techniques [40, 50, 51] and their more modern related algebraic counterparts, 
namely the quantum inverse scattering (or quantum spectral transform) method 
of Faddeev and his co-workers [52, 53]. Also of interest in this regard is that 
various seemingly different integrable models can be brought into much closer 
relationship. For example, the Bethe-ansatz technique was first introduced [50] 
some sixty years ago to solve the 1-d spin-½ Heisenberg model. It was later 
successfully applied [54-56] to the anisotropic spin-½ XXZ model in l-d, which 
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forms the focus of interest in the present work. On the other hand, for example, 
the method has also been applied to the 1-d N-site Hubbard model, both in the 
N ~ oo limit (of interest, for example, as a model of the quasi-one-dimensional 
conductor polyacetylene) where exact closed-form analytic solutions are avail- 
able [57], and for finite N (of interest, for example, as a model of the cyclic 
polyenes) where only numerical solutions exist [58]. 

A third reason for emphasising 1-d spin models here is related to the previous 
discussion. Thus, it is well known [40] that in 1-d not only can fermionic models 
be transformed into bosonic models, but spin models can also be related to either 
an equivalent fermionic or bosonic description. Such interrelationships and 
equivalences between various 1-d models have already been used by various 
authors to predict the behaviour of a variety of nonintegrable (e.g., spin-l) 
lattice models [59-61]. Thus, we may also expect our present work on spin 
models to have strong overlaps with comparable models of strongly correlated 
electronic systems and, indeed, also with nonlinear field-theoretical models. 

Fourthly, and finally, although 1-d models were originally studied as simpler 
proxies for their counterparts in 3-d, a large number of materials are now known 
to be either quasi-l-d or quasi-2-d with respect to an array of fascinating 
properties which they exhibit. Many of the earliest of these quasi-l-d extended 
systems were polymers comprising long chains of conjugated double bonds. 
Polyacetylene films provide a specific experimental system here, and much 
theoretical work has been expended on understanding the magnetic, optical and 
electric properties of pristine and lightly-doped trans-polyacetylene, for example. 
The cyclic polyene homologous series, to which the CCM has already been 
applied [35, 36], are the finite 1-d analogues in this respect. Their lowest member 
represents the n-electronic model of the prototypical aromatic compound, 
namely the benzene molecule, C6H 6. 

Nowadays, there are also many materials which are known to behave to a 
greater or lesser degree as quasi-l-d spin systems, exhibiting either ferro- 
magnetic or antiferromagnetic properties. For example, neutron scattering 
experiments [62] on CPC (dichlorobispyridine copper), CuC12.2N(CsDs), have 
been interpreted as giving strong evidence that this material provides a rather 
accurate representation of a spin -1 1-d (isotropic) Heisenberg quantum antiferro- 
magnet. Similarly, CsCoC13 (and CsCoBr3) on the one hand and Cs2CoC14 on 
the other are believed to be good physical realizations of 1-d spin-½ quantum 
antiferromagnets o f  XXZ type, showing high anisotropy into the Ising-like 
and planar (XY-model)-like regimes respectively. In the same vein, COC12.2D20 
is believed to model the comparable 1-d spin-½ Ising-like quantum ferro- 
magnet. Other materials also model 1-d systems with higher spin values. For 
example, CsNiC13 and NENP (nickel(2) ethylenediamine nitrito perchlorate), 
Ni(C2HsN2)zNO2(C104), are both quasi-l-d spin-1 antiferromagnets, and 
CsNiF3 is a quasi-l-d spin-1 ferromagnet. All three materials are believed to be 
well represented by the spin-1 Heisenberg model (with additional easy-plane 
crystal field anisotropy). Finally, TMMC (tetramethylammonium manganese 
trichloride), (CH3)4NMnC13, is a quasi-l-d spin-~ (and hence quasi-classical due 
to the high spin value) antiferromagnet of nearly Heisenberg type, but with a 
small anisotropy into the planar (XY-model),like regime. Many other examples 
also exist. 

Finally, we also point out that while some of these materials~are only 
moderately one-dimensional in nature, others provide extremely accurate repre- 
sentations of 1-d systems. For example, the magnetic Ni 2+ ions in the material 
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NENP form chains due to the strong super-exchange coupling between the ions. 
The ratio of interchain to intrachain couplings for this material is confidently 
estimated to be appreciably less than 0.1%. 

The XXZ-model Hamiltonian is first briefly reviewed in Sect. 2, before we 
describe the application of coupled cluster (CC) techniques to it. We recall that 
one of the key distinguishing features of the CCM is the underlying similarity 
transformation that is induced by the cluster correlation (creation) operator S 
(which is more usually denoted as T in the quantum chemistry literature). We 
recall further that this aspect implies that the CCM provides basically a 
biorthogonal (rather than an orthogonal) formulation of the quantum many- 
body problem. The explicit Hermitian conjugacy of the corresponding bra and 
ket vectors is thus no t  manifestly maintained at each level of approximation, for 
reasons that have been well described elsewhere [14, 15, 63, 64]. Accordingly, we 
first describe in Sect. 3 the usual CC parametrization of the ground energy 
eigenket. Although a knowledge of the ket state suffices to evaluate the ground- 
state energy of the system, other properties require a knowledge of the bra state 
also. Its corresponding parametrization in what we nowadays refer to as the 
normal CCM (NCCM)- - to  distinguish it from the extended (ECCM) version of 
the CCM first introduced by Arponen [14, 15, 63, 64]--is then described in Sect. 
4. 

In Sects. 3 and 4 we describe both how standard CCM approximation 
schemes, which are already well-known in quantum chemistry, can be tailored to 
the spin lattice problems at hand, and, furthermore, how several rather intuitive 
and appealing new schemes may also be introduced. The usefulness of each of 
these schemes is demonstrated in Sect. 3 by comparing their predictions for the 
ground-state energy with known exact results. In particular, we show how a 
definite signal of the known antiferromagnetic phase change in 1-d is observed in 
specific CCM approximations. 

We then turn in Sect. 5 to the calculation of the staggered magnetization and 
of the correlation function and its corresponding associated order parameter. 
These quantities provide much more demanding tests for an approximate 
wavefunction than the ground-state energy. In particular, they provide a measure 
of the presence or absence of long-range antiferromagnetic order in the system. 
We observe once more that their behaviour as functions of the anisotropy in the 
model Hamiltonian is also strongly suggestive of a phase transition in the same 
CCM approximations and at the same corresponding values of the anisotropy 
parameter as was observed in the ground-state energy calculations of Sect. 3. 

As a final piece of evidence that the previously observed behaviour does 
indeed represent a phase transition, and not simply a mathematical breakdown 
of the particular CCM approximation schemes adopted, we discuss the corre- 
sponding NCCM parametrization of the excited states in Sect. 6. We observe 
now that whereas the (approximate) excitation spectrum has a gap at the 
boundaries of the Brillouin zone for values of the anisotropy parameter where 
there is nonzero long-range order as measured by the earlier calculations of the 
staggered magnetization and the order parameter, this gap disappears precisely 
at the same critical value where the order disappears, and which signals the phase 
transition. 

Our results on these 1-d spin-½ chains are summarized and discussed in Sect. 
7. In view of their considerable success in describing both the quantitative 
behaviour of the ground-state energy and the correct qualitative behaviour of the 
long-range correlations and the elementary excitations over an entire phase right 
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up to the transition point, we also consider their generalizations to lattices of 
1 higher dimensionality and to spins, s > ~. In both of these cases almost no exact 

results are known. Furthermore, both extensions are of considerable topical 
interest, in the former case with regard to the suggested relevance of the 2-d 
spin-½ model to high-temperature superconductivity [2], and in the latter case 
with regard to the remarkable conjecture of Haldane [59] concerning the 
qualitatively different nature of the zero-temperature phase diagram for the 
spin-1 case in comparison to its spin -1 counterpart. 

2. The XXZ model: some preliminaries 

The most general XXZ-model Hamiltonian comprises N quantum-mechanical 
spins g i = { s ~ . ; ~ = x , y , z }  on the sites {i} of a given regular lattice in d 
dimensions. Periodic boundary conditions are usually assumed for the lattice, 
and in any case we are generally interested in the infinite lattice limit, N ~ ~ .  
The spins interact via the anisotropic nearest-neighbour Hamiltonian: 

1 ~ ~ (sXsX y y z z H = ~  ~ , ,+~ +sis i+~ + Asisi+~), (1) 
i = 1  Q = I  

where the sum on ~ runs over a l ( v  nearest neighbours. For example, the 
coordination numbers v for the 1-d chain and the 2-d square lattice are v = 2, 4, 
respectively. The Hamiltonian of Eq. (1) contains as three special cases the Ising 
model (A ~ oo), the (isotropic) Heisenberg model (A =1),  and the planar (or 
XY-) model (A = 0). 

The spins obey the usual SU(2) angular momentum algebra: 

[s}, S~k] = i6:kS~, (2) 

where (0~,/~, 7) is any cyclic permutation of the indices (x, y, z). From the 
commutation relation of Eq. (2) it is easy to show that: 

[H, s~] = 0, (3) 

where gr is the total spin operator: 
N 

~r = Z ~," (4) 
i = 1  

The energy eigenstates may thus be chosen to be simultaneous eigenstates of the 
z-component of total spin, s~., which is hence a good quantum number. In 
general, the spin quantum number s may take any of the usual integral or 
half-integral values: 

sj'2 __ s(s + 1); s -- ½, 1, 3, . . . .  (5) 
1 For present purposes we shall mostly be interested in the case s = ~. We shall 

also concentrate almost wholly on the 1-d chain. 
It is clear that the ground state of the classical counterpart of Eq. (1) is 

ferromagnetic, with all spins aligned along the z-axis, for all lattices when 
A ~< - 1. The corresponding classical ground-state energy is Ect = lNvAs2. Con- 
versely, in the case A > - 1, the classical ground state is antiferromagnetic for all 
bipartite lattices. In this latter case all of the spins are again aligned along a 
specific axis, but in opposite directions on the two sublattices. Thus, for IAI < 1 
the classical antiferromagnetic magnetization axis is along some arbitrary direc- 
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tion in the xy-plane, whereas for A > 1 it is along the z-axis. The corresponding 
classical ground-state energies are Ect = - 1 N v s 2  for IA[< 1, and Ec, = - ½ N v A s  2 
for A >~ 1. We note that this classical N6el state in which all nearest-neighbour 
pairs have opposed spins is only possible for bipartite lattices, such as the 1-d 
chain and the 2-d square lattice. By contrast, the 2-d triangular lattice is not 
bipartite, and provides an example of where such a simple antiferromagnetic 
means of minimizing the energy of Eq. (1) in terms of two sublattices is 
frustrated. 

We note that whereas the perfectly aligned ferromagnetic state with all spins 
pointing in the same direction along the z-axis is an exact eigenstate of the 
quantum-mechanical Hamiltonian of Eq. (1) as well as of its classical counter- 
part, the same is not true of the N6el state. In the N6el state with z-axis as 
magnetization axis, we have s~ = 0. The xy  part of the Hamiltonian now induces 
quantum fluctuations in the N6el state which must be included to obtain the 
exact ground state. Nevertheless, it is clear that the xy-planar term in H can only 
act to exchange spins on'different sublattices, and hence also that s~-is conserved 
as we have already seen. We shall therefore work wholly within the s~ = 0 
subspace, since this is known to include the exact antiferromagnetic ground state, 
at least for the s = ½ XXZ-model with A > - 1 in 1-d. In fact, a stronger theorem 
has been proved [65] for the isotropic (A = 1) Heisenberg case in any number of 
dimensions, namely that the ground state of a discrete spin-½ system is nondegen- 
crate (and hence an ST = 0 singlet) for any bipartite lattice with equal numbers 
N / 2  of spins on each equivalent sublattice (i.e., such that the Heisenberg 
interactions are ferromagnetic between spins on the same sublattice and antifer- 
romagnetic between those on different sublattices). 

The starting point for any CCM parametrization is an uncorrelated model 
state I~),  and for the present spin-½ XXZ-model on a bipartite lattice we shall 
henceforth always choose ]~) to be the equally populated two-sublattice N6el 
state with z-axis chosen as quantization axis, and hence with s~-= 0. It is 
particularly convenient [39] to perform a notional rotation of 180 ° about the 
y-axis on one sublattice, say the up-sublattice, so that in this so-called N6el basis 
the model state has all of the spins in the "down" direction. Thus, on the 
up-sublattice we have the transformation s x ~ - s  x, Sy ~ Sy, sz ~ - s z .  

For the s = ½ system to which we now restrict ourselves we also introduce the 
usual Pauli spin matrices, ~r~ = 2s~; ~ = x, y, z. We also introduce the usual 
raising and lowering operators (albeit with a nonstandard normalization con- 
stant), such that in the N6el basis a~ - ~ x = ~(a~ +_ ia¢,) on the down-sublattice, and 
a~ - ½( - a ~  +_ ia~) on the rotated up-sublattice. We note that the N6el rotation 
leaves the algebra of Eq. (2) unchanged, so that on all sites we have the 
equivalent commutation relations: 

[%+, cry-] =a;a jk ;  [a;, a~] = -I-2cr+ 6j~. (6) 

The Hamiltonian of Eq. (1) may now be rewritten in the N6el basis as: 

N 
H =  - E ~ [¼(°'+°'++~ +a7~,7+,) +(a/8)a;a~+a].  (7) 

i = l g = l  

We note that in the N6el basis we now have that cry-I~) = 0 for all k, while 
a~-[~) is a state with the kth spin reversed with respect to the model N6el state. 
Thus, the N6el state now acts as a cyclic vector for the sets of operators {or; } 
and {o-; }, which play the respective roles of complete sets of single-spin creation 
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and destruction operators in relation to it. More specifically, we have that if we 
denote the wavefunctions for a single spin to be in the up and down states (in 
the Nrel basis) as 1+ ) and 1 - )  respectively, then: 

+_1+>; (8) 
We conclude these introductory remarks with a brief discussion of some of the 

1 exact results that are known for the XXZ-model. For the s = i  1-d Heisenberg 
(A = 1) chain, the exact eigenstates were first obtained for arbitrary N as long ago 
as 1931 by Bethe [50]. Nevertheless, these exact wavefunctions were (and remain) 
extremely difficult to manipulate to obtain quantities of physical interest. For 
example even the ground-state energy of the infinite chain was not obtained until 
about seven years later, when Hulth~n [66] made use of an integral equation 
approach. Even more importantly, the uncertainty surrounding the nature of the 
long-range order contained in these wavefunctions lasted much longer. In 
particular, when coupled with the inapplicability of the Bethe-ansatz approach to 
lattices of higher dimensionality, this continuing doubt led both Anderson [67] 
and Kubo [68] independently to the approximate description of  these systems in 
terms of the so-called spin-wave theory. Finally at the ground-state level, the 
Bethe-ansatz method was extended by Orbach [54] in 1958 to deal with the s = ½ 
XXZ-model in 1-d considered here. 

l Heisenberg chain were first investigated The low-lying excitations of the s = 
by des Cloiseaux and Pearson [69] in 1962. They used a generalization of the 
earlier approach of Hulthrn [66]. A detailed description of what became known 
as the antiferromagnetic spin-wave excitations of the anisotropic XXZ-model 
s = ½ chain was given a few years later by des Cloiseaux and Gaudin [70]. On the 
other hand, it was not until as late as 1981 that Faddeev and Takhtajan [71] 
resolved the confusion and misunderstanding that had heretofore existed in 
connection with the precise nature of the spin-wave excitations given by the 
Bethe-ansatz techniques. They established for the s = ½ Heisenberg antiferromag- 
net that the actual spin of  an elementary spin wave on the 1-d chain is itself equal 
to one-half, by contrast with the singlet (s = 0) or triplet (s = 1) values that 
previous authors had described. In particular, by making contact between the 
Bethe-ansatz techniques and the then recently invented quantum inverse scattering 
method [52, 53], Faddeev and his coworkers showed how this elementary spin-½ 
spin-wave excitation could be interpreted as a single kink-soliton. Furthermore, 
they demonstrated how all actual physical states have integral values of the spin, 
and hence comprise an even number of spin waves or kinks (and antikinks). 

We summarize below the main exact results that have emerged out of the work 
discussed above for the s = ½ XXZ-model in 1-d. In the ferromagnetic (s~. = -t-1 N) 
regime, A ~< - 1 ,  the exact ground-state energy is given by: 

Eg =¼A; A ~< - 1 ,  (9) 
N 

just as in the' classical case. Precisely at the point A -- - 1  there is a first-order 
phase transition to a 'critical' antiferromagnetic phase. This phase persists over 
the entire range [A[ ~< 1 of  the anisotropy parameter. Since it includes the A = 0 
case we refer to it as the planar-like (or XY-model-like) phase. Its ground-state 
energy is given by the exact expression: 

Eg = ¼ cos 0 -- ½ sin 2 0 f ~  do9 • IAI ~< 1, 
N cosh(na})[cosh(20{o) - cos 0] ' 

0 ~ < 0 - c o s  -1A~<n. (10) 
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Equation (10) can be specifically evaluated for the planar model, to give: 

Eg 1 
- ; A = 0 .  ( 1 1 )  

N rr 

Whereas the critical phase which exists for ]A] < 1 has a (s~ = 0) nondegener- 
ate ground state, at A = 1 the system undergoes another phase change to a new 
Ising-like antiferromagnetic phase which persists over the entire range d > 1. 
This phase has a doubly-degenerate ground state, but still with s~-= 0. The 
ground-state energy changes continuously and smoothly at A = !, and is given 
for A >~ 1 by the exact expression: 

1 I l ~ = ~ c o s h T - g s i n h 7  1 + 4  (l+e2m~)-I ; l~<A=cosh  7. (12) 
m = l  

Direct evaluation from Eq. (12) shows that in the Heisenberg and Ising limits the 
ground-state energy is given respectively as: 

Eg , 
~ = ~ - l n  2; A = 1, (13a) 

eg > - - - I ( A + I ) .  (lab) 
N ~ o  4 

What principally distinguishes the two antiferromagnetic phases of the s = ½ 
XXZ-model chain in 1-d are their long-range order properties. These may 
conveniently be summarized in terms of the spin-spin correlation function G, 
defined by the ground-state expectation value: 

G~ --- (8i" 8i+n), (14a) 

between spins n sites apart on the chain. We note that the translational variance 
implied by the imposition of periodic boundary conditions ensures that Gn is 
independent of absolute position i on the chain. We may define an associated 
order parameter # as: 

# = lim ]G. 1. (lab) 
n ~ o o  

We may also define the staggered magnetization IQ as: 

~t  - (~,) .  (15) 

Since both Gn and 1Q are defined in terms of operators 6; given in the N6el basis, 
they do not have the alternating signs associated with the sublattice structure in 
the antiferromagnetic regime. 

The Ising-like (A > 1) phase is now characterized by the presence of long- 
range order, such that # ~ 0 and M ~ 0. Furthermore, the spin-spin correlation 
function Gn decays exponentially to its long-range limit. By contrast, both the 
order parameter p and the staggered magnetization M are zero in the planar-like 
(IA[< 1) phase. Nevertheless, this latter phase is 'critical' in the usual sense that 
the correlations decay algebraically (i.e., with power-law behaviour) to zero, 
rather than exponentially. Thus, in the two antiferromagnetic phases we have the 
exact behaviour: 

)'# +Af -n ;  A > 1 (16) 
am , IAI< 1, 
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where the constants/~, A, B and ~, as well as the exponent fl > 0, all depend on 
the anisotropy parameter A. The order parameter itself has the limiting be- 
haviour: 

f l ;  d --, oo 
(17) 

# ~ ( 0 ;  A ~ I .  

The other main qualitative difference between the two antiferromagnetic 
phases concerns the presence or absence of a gap in the excitation spectrum. 
Thus the excited states are generally described in terms of a dispersion law e(k) 
for the excitation energy as a function of the momentum variable k within the 
first Brillouin zone, namely - r t  < q ~< n in 1-d. Faddeev and Takhtajan [71] have 
nevertheless indicated that the fundamental excitation is that of a single sr  = 5 
kink with momentum 0 ~< q ~< re. The exact excitation energy of  this single-kink 
state in the critical (planar-like) phase is given as: 

e(q) = -~ sin(q); 0 ~ 0 ~ COS- 1 A ~ ~, 0 ~< q ~< re. (18) 

The spectrum of Eq. (18) is such that e(r 0 = 0, and is hence referred to as 
gapless. By contrast, in the Ising-like phase the single-kink state has excitation 
energy: 

e(q) =--K1 sinh 7( 1 _ k ~  cos2 q)½; 1 < A  --- cosh 7, (19) 
7Z 

where the parameter kl is given in terms of the complete elliptic integrals Kx and 
K', : 

;o , ~dO[1 - ( 1  - k  2) K1 =- dO(1 - k 2 sin 2 0) -½" K'~ - 

by the relation: 

K'I 
K~ 7r 

sin: 0] -½, (20) 

(21) 

We note that in this Ising-like phase, the excitation spectrum of Eq. (19) displays 
a nonzero gap at the zone boundary, e(n) ~ 0. 

We note finally that the observed physical excitations with s}--= + 1 are 
actually formed from two such kink solutions. The excitation energy obeys the 
exact additive relation: 

Ek(q) = e(k) + e(q - k). (22) 

The excitation spectrum is thus actually a continuum, with respect to the 
momentum parameter k, for a fixed value of  total momentum, q. The previously 
mentioned antiferromagnetic spin waves [69, 70] are more precisely now just 
described by the lower boundary to this continuum. 

3. CCM parametrization of the ground ket states; ground-state energy 

The exact ground-state ket wavefunction 17') is expressed in the conventional 
CCM form: 

I V )  = e S [ ~ ) ,  (23) 
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in terms of the N6el state [~) as our chosen uncorrelated model state. Since we 
know that s~- is a conserved quantum number, and since we work within the 
invariant subspace s~-= 0, the only n-body partitions, Sn, of the correlation 
operator S that contribute are those which flip an even number of spins with 
respect to ]~): 

L 

S = ~ S2e, (24) 
g = l  

where N = 2L is the total (even) number of spins. For  the s = ½ case in 1-d which 
we consider here, we may write: 

N 

Sn+ 1 = Z 2 ~("+') "+'~+ "+ " '"  a+ (25) ° r l r 2 . . . r n V i  V i + r l ~ i q - r 2  i + r  n • 
i = 1  { r l , r 2 , . . . , r n }  

The n-fold sum in Eq. (25) over the ordered set of indices {r~, r 2 , . . . ,  r, } is over 
all values of the individual indices between 1 and N compatible with the triple 
requirements that 1 ~< r 1 < r2 < • • • < rn < N; that in Eqs. (24) and (25) the only 
configurations with nonzero weight in the s~- --- 0 sector contain equal numbers 
of spin-reversals with respect to Iq ~) on even and on odd sites; and the fact that 
the periodic boundary condition imposes extra symmetries on the configurations 
(e.g., s(, 2) = ~N-nJ'(2) ~ and that such otherwise equal configurations should only be 
counted once. We also note that the translational invariance implied by the 
periodic boundary condition makes the coefficients in Eq. (25) independent of 
the absolute site index i. Henceforth, we work directly in the infinite chain limit, 
N = 2 L  ~ o o .  

As usual, it is now necessary to consider various approximation schemes for 
the correlation operator S. The standard SUBn truncation scheme is certainly the 
best known such method. In the present case it simply amounts to replacing the 

1 = 5n, where n upper limit L = 5N in Eq. (24) by some (much reduced) value ' 
is even, and hence setting to zero all higher partitions Sm of the correlation 
operator, for m > n. The lowest such approximation now is the SUB2 trunca- 
tion, S ~ $2, which is well known in quantum chemistry as the CCD approxima- 
tion (or, in this case, also the CCSD approximation since S~ --0 in the present 
s} = 0 sector), where the initials S and D refer to the single- and double-excita- 
tion partitions S~ and $2, respectively. For our present spin-½ infinite 1-d chain, 
we have: 

U2m -- 1 ¢a'i i +  2m 
i = l  m = l  

Clearly, a full SUB2 calculation now involves the determination of the set of 
parameters {br; r = 1, 3, 5 . . . .  }. We may also define a further SUB2-n sub- 
approximation, with n as an even positive integer, in which we keep only the 
lowest ½n double-spin-flip parameters {b r ; r  = I, 3, 5 , . . . ,  n - 1} by truncating 

1 the sum over the index m in Eq. (26) at the value ~n. 
Other physically motivated schemes are also possible, and it is of interest to 

examine them simultaneously. For example, the analysis of Faddeev and his 
co-workers [52, 53, 71] discussed previously, has clearly indicated the concept of 
a single-kink excitation as playing a central and fundamental role, from which 
other excited states may be constructed as multi-kink-antikink-pair solutions. 
These considerations lead us to investigate the possibility of constructing an 
approximation scheme in which the basic concept used to decide which configu- 
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rations to keep in Eqs. (24) and (25) is not the total number of "wrong" spins 
(with respect to I#)) as in the SUBn scheme, but rather the number of kinks or 
antikinks. i 

In this way we are led to what we henceforth denote as the PSUBn scheme, 
in which at a given nth-order level we retain only those "wrong-spin" configura- 
tions which comprise no nore than n "plaquettes". By definition, each plaquette 
(or "domain") on the 1-d chain is a contiguous duster of wrong spins which is 
terminated at each end by a kink or antikink (or "domain wall"), which delimits 
it from any other plaquette. A single plaquette may be of arbitrary length. By the 
above definition each plaquette is separated from any other by at least one 
intervening "correct" spin (i.e., one which is unaltered from its N6el-state value). 
Each plaquette thus models a kink/antikink pair, and the PSUBn scheme thereby 
focuses on the number 2n of boundaries between "correct" and "wrong" blocks 
of spins, rather than on the number of wrong spins themselves. 

Thus, in the lowest PSUB1 approximation, we have that the duster correla- 
tion operator S is approximated in the s~. = 0 sector as: 

2m 

i = 1  m = l  : = 1  

We may again define a further truncated PSUBI-n subapproximation, in which 
we keep only single-plaquette configurations of up to n adjacent spin-flips, where 
n is even. It is thus fully determined by the set of ½n coefficients 
{gp;p = 2, 4, 6 . . . .  , n}. 

A third sequence of approximations, which we denote as the LSUB-n 
scheme, is based on the localized nature of the interactions themselves and of the 
excitations that they cause. At the LSUB-n level of approximation, we now 
retain only those configurations for the correlation operator S which comprise an 
arbitrary number of spin-flips with respect to the N6el state over a "locale" of 
size n, and which are compatible with s~-= 0. In the present 1-d chain context, 
an nth-order locale is simply a string of n immediately adjacent sites. Obviously 
the LSUB-2 approximation is identical to both of the previous SUB2-2 and 
PSUB1-2 schemes, whereas in the LSUB-4 and LSUB-6 approximations respec- 
tively we replace S ~ SLSUB. 4 and S ~ SLSUB.6, where: 

SLSUB_ 4 ~ tb " + a  + ± b  a+cr + ± "  ~+~+ a + a + a (28) \ I t " /  i + 1  7 -  3 i i + 3 q - ~ 4 t ~ i  W i + l  i + 2  i+3] ,  
i = 1  

± , e  i f+O.+ 0.+ 0.+ S L S U B - 6 = S L s u B - 4  -~- (bstT+t77+sTJ12 i i + 3  i + 4  i + 5  
i = 1  

. .}-f140-+~+ ,.~+ ,.,+ + + ~ ' i +  2 ~ ' i +  3 w i +  5 "~- f23  0 ' /+ 0 " ~  1 0"i + 4 0 " i +  5 

.}_,e ~ + 0 . +  ~ +  0.+ + + + J 2 5 ° i  i + 1 ° i + 3  i+4"~- f34(7i  0 " i + 1 0 " i + 2 0 " / + + 5  

+ g 6 0 " + ~ +  ~ +  a +  + + ui+l~,i+ 2 i+3ai+4a~+5). (29) 

Undoubtedly, other truncation hierarchies may also commend themselves, 
but in the rest of this paper we discuss only the results obtained by the above 
three schemes. In each case the procedure to evaluate the retained cluster 
configuration coefficients is the same. Thus, the ground-state Schr6dinger equa- 
tion, HI~)=Eg[TJ) ,  is first written in the usual CCM similarity-transformed 
f o r m :  

e-SHeS[@ > = E~ I~ >. (30) 
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Taking the inner product of Eq. (30) with the Nrel state I~) itself rather easily 
leads to the exact result for the ground-state energy of the 1-d chain: 

Eg/N = --¼(A + 261), (31) 

where b~ -= s] 2), as above. Similarly, a set of coupled nonlinear algebraic equa- 
tions for the various cluster configuration coefficients is obtained by taking the 
inner product of Eq. (30) in turn with the respective wavefunctions correspond- 
ing to each configuration retained in Eqs. (24) and (25) by the specific approxi- 
mation. After deriving the resulting exact such equations the coefficients of any 
configurations outside the retained set are then set to zero in the usual way, to 
have a closed set of equations. 

The actual evaluation of the coupled set of equations for each approximation 
scheme is now straightforward in principle although often cumbersome in 
practice. We quote only the final results. Thus, in the first place, the full SUB2 
equations may be evaluated as follows: 

2Ab 1 -- 1 + 5b~-2 ~ b2n_l(bzn_ 1 + bzn+l ) =0,  (32a) 
n=l  

2(A + 2b,)bzm_,- ½ ~" b2n21(bjzm_Zn_ll+b[2m_~+,l 
n=l  

q-b2m+2n_ 1 +b2m+2n_3) = 0 ;  m ) 2 .  (32b) 

The lowest subapproximation, namely SUB2-2, immediately gives from Eq. 
(32a) the equation 3b~ + 2Abl - 1 = 0, and hence from Eq. (31) the correspond- 
ing estimate for the ground-state energy: 

Eg 
= -i~[A + 2(A 2 + 3)½]; SUB2-2. (33) 

It is interesting to note that even this extremely simple SUB2-2 subapproxima- 
tion has the correct asymptotic form of Eq. (13b) in the Ising-model limit. 
Curiously, it is also exact at the A = - 1  transition point to the ferromagnetic 
state, where Eg/N = -¼, from Eq. (9). For the particular Heisenberg (A = 1) 
and XY-planar (A = 0) cases, E q. (33) yields the respective SUB2-2 results, 
Eg/N = - ~  ~ - 0 . 4 1 7  and - x / 3 / 6  ~ - 0 . 2 8 9 .  These values may be compared 
with their exact counterparts from Eqs. (11) and (13a), namely -0.443 and 
-0.318 respectively to the same three significant figure level of accuracy. 

Numerical investigation of the higher-order SUB2-n subapproximations in- 
dicates that, at least for values A ~> 0, the resulting sequence of approximants for 
Eg/N converges very rapidly as a function of n. More interestingly, the full SUB2 
Eqs. (32a,b) may also be solved exactly by Fourier transform techniques, to yield 
the explicit solution: 

f f  cos[(m -- ½)x] K dx{1 - f (x ;  k2)} ; m >~ 1 (34) 
b2m-1 = 2--~ ~ cos(½x) ' 

where the function f(x; k 2) is defined as: 

f(x; k 2) = {1 - k 2 cos2(½x) } ½, (35) 

and where the constants K and k 2 are defined as: 

K= A +2bl;  k2_=(1 + 2Abl + 2b~)/K 2. (36) 
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A self-consistent equation for the coefficient b~ is obtained by putting m = 1 in 
Eq. (34). This equation is easily solved numerically. In this way we obtain, for 
example, the SUB2 estimate Eg/N,.~-0,41862 for the infinite Heisenberg 
(A = 1) chain. Once again, the full SUB2 approximation reproduces the correct 
asymptotic form of Eq. (13b) for large values of A. 

The most interesting feature of the full SUB2 results, however, arises from 
the fact that real solutions for the coefficients {b, } clearly only exist if [k[~< 1. In 
turn, it is not difficult to show that this condition is fulfilled only for A >~ At, 
where A c ~ 0.37275. We show in Fig. 1 the estimates for Eg/N versus A for both 
the SUB2-2 and SUB2 approximation schemes, together with the corresponding 
exact results from Eqs. (9), (10) and (12). We note that the exact phase 
transition at A = 1 is not at all evident from this plot. The absence of a SUB2 
solution in the regime below the terminating point, A < Ae, clearly signals a 
possible phase transition in the physical system, even though the value of A¢ is 
not very close to the exact value of A = 1. Nevertheless, without further 
supporting evidence we are certainly not able to rule out the possibility that the 
terminating point at A = Ac in the SUB2 approximation is simply a mathemati- 
cal breakdown due to an inadequate description of the physical system. 

In order to investigate the above point further, we also calculate in Sect. 5 
such other properties of the system as the staggered magnetization and the 
spin-spin correlation function. However, even at this stage where we have only a 
knowledge of the ground ket state, the long-range behaviour of the double-spin- 
flip configuration coefficients {b r } is rather suggestive that the terminating point 
might indeed approximate the actual transition which we know occurs at A = 1. 
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Fig. 1. The ground-state energy 
per spin, Eg/N, of the infinite 
spin-½ XXZ-model chain as a 

function of the anisotropy 
parameter A. We  compare the 
exact results in the 
antiferromegnetic (,t > - 1 )  and 
ferromagnetic (A ~ --1)  regimes 
with the uncorrelated N6el 
approximation ( Eg / N = -¼A)  

and the present CCM results in 
the SUB2-2, SUB2, PSUB1, and 
LSUB-4  approximations 
described in the text. The 
terminating point at 
d = A c ~ 0.37275 for the SUB2 
scheme is clearly shown. We note 
that although the exact results 
show a phase change at A = 1, 
the energy is continuous and 
smooth at this point 
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Thus, for large values of m the leading asymptotic term in b2,~_ ~ is given from 
Eqs. (34)-(36) as: 

~0(~-2~); zl > zl~, (37) 
b2m - I - m + ~ m  [ym -2 ;  ~1 = A e, 

where ~ is a function of A only, and 7 is a constant. This changeover from 
exponential to algebraic long-range decay is strongly reminiscent of the compara- 
ble behaviour o f  the exact spin-spin correlation function G, above and at the 
actual transition point d = 1, as given in Eq. (16). 

We turn next to the PSUB1 approximation specified by Eq. (27). In this case 
the coupled set of CCM equations for the single-plaquette configuration co- 
efficients {g, } may be derived as: 

1 3 2. - 5  + A& + ~g~ - g 4  = O, (38a) 

m - I  m - 1  

Agz. , , -&, . ,+2+2mg~g2,~-A 2 g2~g2,~-2~ +(1 -~m~) ~ g~.&,~-~+2=O; 
n = l  n = 2  

m/>2. (38b) 

The corresponding PSUB 1 estimate for the ground-state energy is again given by 
Eq. (31), with b~ =-gz. We have not sought an exact solution to Eqs. (38a,b). 
However, just as for the SUB2-n sequence of approximations, so too is the 
convergence with respect to n of the ground-state energy very rapid for the 
PSUBI-n sequence for all values zl > - 1  in the antiferromagnetic regime, as 
exemplified in Table 1. The (converged) numerical results are also displayed in 
Fig. 1. We see clearly that the PSUB1 estimate for the ground-state energy is 
superior to the SUB2 estimate over essentially the whole range A > Ac for which 
comparison can be made. On the other hand, for smaller values of A the PSUB1 
approximation both becomes increasingly inaccurate and, unlike the SUB2 
approximation, shows no sign of terminating, and hence gives no signal of the 
physical antiferromagnetic phase transition. 

The corresponding results for the ground-state energy from the LSUB-4 
approximation are also displayed in Fig. 1. The use of Eq. (28) in this case leads 
to the three coupled equations: 

2Ab~ - 1 + 3b2~ - 2b~b3 - 2b~ - 2g 4 = 0, 

2Ab3 ~ 2 - 5b~ + 2b~ b 3 - ½ g 4  = 0, (39) 

Ab~(b~ + 2b3) - 2b~b~ - (A + 4b~ + b3)g4 = 0, 

Table 1. The ground-state energy per spin, E~ IN, for the infinite (N-* ~o) spin-½ XXZ-model chain 
in l-d, for various values of the anisotropy parameter zl. CCM results for various PSUBI-n 
approximations are given and compared with corresponding exact values 

a E~/N 

PSUB1-2 PSUB1-4 PSUB1-6 PSUB1-8 PSUBI-10 Exact 

5.0 -- 1.29858 -- 1.29944 -- 1,29947 - 1 ~29947 -- 1,29947 -- 1.29950 
2.0 -0,60762 -0.61436 -0.61509 -0.61517 -0.61517 -0.61722 
1.0 -0.41667 -0,42966 -0.43099 -0.43111 -0,43111 -0.44315 
0.O -0.28867 -0,28867 -0.28867 -0,28867 -0.28867 -0.31831 

--1.0 -0.25000 --0,16491 --0.17599 -0A7525 --0.17529 --0,25000 
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Table 2. The ground-state energy per spin, E~/N, for the 
infinite (N ~ ~) spin-½ XXZ-model chain in l-d, for vari- 
ous values of the anisotropy parameter A. CCM results in 
the LSUB-4 and SUB2 +g4 approximation schemes are 
compared with exact results 

A Eg/N 

LSUB-4 SUB2 + g4 Exact 

5.0 -1.29947 -1.29947 -1.29950 
2.0 -0.61552 -0.61553 -0.61722 
1.0 -0.43627 -0.43657 -0.44315 
0.5 - 0 . 3 6 9 2 1  -0.37270 -0.37500 
0.0 -0.31934 --  -0.31831 

- 1.0 -0.32110 --- -0.25000 
-2.0 -0.50482 --  -0.50000 

for the coefficients of the only three configurations retained in this approxima- 
tion. In view of  the extremely rapid convergence of  both the previous SUB2 and 
PSUB1 schemes it might be expected that the LSUB-4 approximation should 
contain the most important contributions from each, despite its relative simplic- 
ity. It is clear from both Fig. 1 and Table 2 that this is borne out. More 
surprising is the fact that the LSUB-4 scheme even appears to give reasonable 
results in the ferromagnetic regime. 

Finally, we note that in order to obtain a phase transition it is essential to 
include at least some of the important long-range correlations. It seems probable 
that a necessary condition for this is that terms of  arbitrarily long range in the 
cluster correlation operator should be retained. Apparently the SUB2 approxi- 
mation is at least qualitatively successful in this regard. Nevertheless, as we have 
seen from the LSUB-4 results, and as was also pointed out by Roger and 
Hetherington [39] for the Heisenberg model, the inclusion of other short-range 
correlations can improve the quantitative estimate of  the ground-state energy 
considerably. We might therefore anticipate that an additional approximation 
scheme which incorporates both the long-range correlations of the SUB2 scheme 
and the one additional four-spin plaquette configuration contained in the LSUB- 
4 scheme, could continue to exhibit a terminating point as a signal of the actual 
transition at A = 1, and also yield improved accuracy. Numerical calculations 
show that such is indeed the case for this so-called SUB2 + g4 scheme, in which 
the terminating point now occurs at a value A'c ~0.4355. For  A > A'c, the 
corresponding ground-state energy estimates are even closer to the exact values 
than the LSUB-4 results, as can also be seen from Table 2. 

4. NCCM parametrization of the ground bra state 

In order to calculate quantities other than the energy, we cannot make direct use 
of the Schr6dinger equation in order to avoid the evaluation of an expectation 
value, and hence we need also to parametrize the bra state. Clearly the most 
straightforward way is simply to keep the bra and ket states as manifest 
Hermitian adjoints of each other. This method was employed independently by 
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Ci~ek [9] and Fink [72], and it leads for an arbitrary operator A to its 
expectation value A in the form: 

A =  (4[ eS*AeS[4 ) / (4 [eS*eS[4 ) ,  (40a) 

= (4[(eS*AeS)z l  4 ) .  (40b) 

Whereas Eq. (40a) may be reduced to the sum in Eq. (40b) of linked (L~ a) 
diagrams, there is no such automatic termination upon expansion in powers of 
S as occurs in Eq. (30). What is even worse is that if the infinite sum implied by 
Eq. (40b) is truncated, the resulting approximant for ~/is in conflict with the 
important Hellmann-Feynman theorem [73]. As Thouless [74] has shown, this 
implies that .4 should be calculated from the same set of diagrams as for the 
energy, but in which one of the interaction potential lines is replaced by the 
operator A in all possible ways. Kfimmel [75] has described a more elaborate 
method to calculate ~/within the CCM, but it is also in conflict with the above 
theorem. 

The first formulation within the CCM of a method to evaluate A which is 
consistent with the Hellmann-Feynman theorem was given by Monkhorst [76]. 
He used techniques of linear and higher-order response theory, but never 
introduced an explicit average-value functional. His scheme was later supple- 
mented by the incorporation of the basis set effects [77] which are vital for the 
practical analytical evaluation of energy derivatives in quantum chemistry. 
Indeed, this latter scheme has by now very successfully been used [78] to 
predict vibrational spectra and to locate transition states for decomposition 
reactions. 

Finally in this context, Arponen [14] introduced two different explicit CCM 
parametrizations of the bra state. Neither is manifestly the Hermitian conjugate 
of the corresponding ket state for reasons outlined above. The main advantages 
that now accrue to such non-manifestly-Hermitian descriptions are that one can 
now give an explicit functional for an arbitrary expectation value i /which is 
derivable from a variational principle, and which is compatible with the Hell- 
mann-Feynman theorem at all levels. The first of these two methods corre- 
sponds to a generalization of the method of Monkhorst [76], and it has been 
named the normal coupled duster method (NCCM). 

The bra ~.round-state wavefunction (~P] corresponding to ]~g), where 
( ~ [ H  = Eg(~[,  is parametrized in the NCCM as: 

(~ l  = (41 ~ - s ,  (41) 

where S is a new correlation operator which at this stage is formally indepen- 
dent of S, although in principle it may exactly be expressed as: 

( 4 [ e St e s 
( 41S - ( 4 [eSt eS[4 ) . (42) 

It is decomposed entirely in terms of destruction operators with respect to ]4),  
in the same way that the ket-state operator S was decomposed in terms of 
creation operators. Thus, for the 1-d spin -1 chain considered here, we write by 
analogy with Eqs. (24) and (25): 

L 

g =  1 + X $2,, (43) 
{ = 1  
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N 
~n+ l  = E E s(rnl+r21.?.rn(TZ(Ti-+rl(~i-+r2"' ' l~i-+rn ' (44) 

i =  I {r l , r2 , . . . , rn}  

where N = 2L, and where the n-fold sum over the ordered set of indices 
{rl, r2 . . . . .  r, } in Eq. (44) has the same meaning as in Eq. (25). We note that 
the particular value (unity) of the constant term in Eq. (43) implies the manifest 
normalization, QP]~> = (q~ Iq~> = 1 ( = (~1~>). We note finally that although 
the NCCM expectation value A =  <~[~e-SAeS[q~> is composed wholly of 
linked terms, the operator ~ itself does generally contain unlinked pieces, unlike 
the original wholly linked operator S. (In fact, it was to cure this remaining 
unlinkedness that Arponen also introduced the alternative extended coupled 
cluster method (ECCM) parametrization of the bra state.) 

It is clear that although the exact operators S and ~7 do preserve the 
Hermitian-conjugacy between corresponding ket and bra states, subsequent 
approximation schemes generally will not. In practical implementations of 
the NCCM, the operator ~q is truncated by retaining exactly the same set 
of destruction cluster configurations as S keeps their creation counterparts. The 
equations which determine the coefficients of the set of configurations retained in 
S and g are then derived by the requirement that the NCCM energy expectation 
value / / =  <¢[ge-SHeS[~> should be stationary with respect to every such 
coefficient [14]. 

A typical example is the SUB2 approximation in which the analogue of Eq. 
(26) for the infinite chain is S--'-qsus2 where: 

~ s u s 2 - - - l + S 2 = l +  ~ ~ b~2m_,aFtr:+2,,_,, (45) 
i= lm=l  

and /~ is now a functional of both sets of amplitudes {br} and {Gr}- The 
stationarity of/-7 with respect to g'2,.- ~ gives the set of formal equations: 

<~] E ~r, ~,+2~_le-sHeS[a~>=O; m>~l. (46) 

These equations, when evaluated with S --* Ssum, lead precisely to our earlier set 
of CCM SUB2 Eqs. (32a,b). Similarly, the stationarity o f / t  with respect to 
b2m_ 1 yields the formal equations: 

<~,'e'S[H,~i tr~+tr++2,,_l]eS[~>=O; m >~ l, (47) 

which have the form of a coupled set of linear equations for the coefficients 
{~2,,- 1 } once the ket-state coefficients {b2,,_ 1 } are used as known input from the 
solution to Eq. (46), and hence to Eqs. (32a,b). 

We remind the reader of two important points. Firstly, we note that the 
ground-state energy calculated by evaluating H = <+lge-SHeSl+> at the sta- 
tionary point in this NCCM procedure is identical to our earlier relation 
Eg = <+le-SHeSl~> from Eq. (30) at any level of approximation, due to the 
stationarity conditions satisfied by the bra-state amplitudes. Secondly, we note 
that despite the fact that the ground-state energy has now been evaluated from 
a variational principle, the corresponding estimate from any particular trunca- 
tion scheme does not in general yield an upper bound to the true energy, since 
the formalism does not manifestly preserve the Hermitian conjugacy between the 
bra and ket states. 
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In the case of  the SUB2 approximation, explicit evaluation of  Eq. (47) yields 
the coupled equations: 

~ml q- 2(~ml -2 ) (A  -b 2 b l ) f f 2 m _  I --8~ml ~ ~2n_lb2n_l 
n=l 

+ 2 ~ G2,, _ 1 (bj2m - 2n - l j + blzm - 2, + it + bzm + 2n - 1 + b ~  + z, - 3) = 0; 
n=l 

m >I 1, (48) 

as the bra-state counterparts of  Eqs. (32a,b). These equations may also be 
evaluated in any SUB2-n subapproximation. Thus, for example, Eqs. (32a) and 
(48) yield the SUB2-2 solutions: 

b, = ½[(A 2 + 3)i/2 _ A], ~'1 = ~(A1 2 _~_ 3) - 1/2; SUB2-2. (49) 

Furthermore, the full set of coupled Eqs. (48) may again be solved by Fourier 
transform techniques to give, as the counterpart of Eq. (34): 

~2,, _ D 1 f ~  dx  cos[(m -½)x] cos(ix) (50) 
- l 4K2rc ~ f ( x ;  k 2) ' 

where the function f ( x ;  k 2) is as defined previously in Eq. (35), and where: 

= -  I f  1 (51) D-1 1 axf-'(x; ½) - 
2re - -  

In this case, the leading asymptotic term in ~2m - 1 for large values of  m is given 
from Eqs. (50) and (51) as: 

fO(/~ --2m) ; A > A 
~'2m -1 -- ) c (52) 

m-~ov (r; 

where 2 is a function of  A only, and F is a constant. 

5. NCCM treatment of properties; staggered magnetization 
and correlation function 

Given any approximate N C C M  solution for the bra and ket ground-state 
wavefunctions, it is a straightforward matter to calculate the corresponding 
approximation for any ground-state property. One of  the most interesting 
properties to study first, particularly in connection with the possible phase 
transition indicated by the terminating point at d = Ac in the SUB2 approxima- 
tion, for example, is the staggered magnetization. This quantity is defined (in the 
rotated Nrel basis) in Eq. (15). Thus, by inserting the SUB2 parametrizations of 
Eqs. (26) and (45) into the N C C M  expectation value functional for the staggered 
magnetization vector M" (~ = x, y, z), we easily find: 

M ~ = - M r ~ z ,  (53) 

where: 

M =  1 - 4  ~ ~ 2 m _ , b 2 m _ , ;  S U B 2 .  (54) 
m=l 

By restricting the sum in Eq. (54) to the m = 1 term only, and by making use 



200 R.F.  Bishop et al. 

I ~.o - 
~ . ~ 

• • ~ ~ 

• / /  

Oa ~.~.~. / k--- SL~,2 -~ 
¢/ ~ 

- 

Fig, 2, The staggered 
magnetization, M, as a 
function of the anisotropy 
parameter A for the infinite 
spin.½ XXZ-model chain for 
t~he two NCCM 
approxiraations SUB2-2 and 
SUB2~ We note that the 
SUB2 ~ h e ~  only has ~ 
solution ~br 
A > A, g 0.37275, ~e point 
at which M ~ 0 in this 
approximation 

of Eq. (49), we first obtain the SUB2-2 estimate: 

Mst~n2.2 = ½[1 + 2zl(A 2 + 3) -½]. (55) 

The full sum in Eq. (54) may also be evaluated from the explicit solutions of  Eqs. 
(34)-(36) and (50)-(51). We thus find the full SLY2 result for the staggered 
magnetization: 

~ (" gx sinZ6x)f-~(x; k ~) 
MsuB~ = ~ - ~  - e ~  do (56) _t. | dx[1 + sin2(½x)]f-l(x; k ~) - 1 

7~ do 
These two estimates from Eqs. (55) and (56) of the staggered magnetization M 
are shown in Fig. 2. In particular, we observe that Ms~B2 ~ 0  as A ~ A~, the 
terminating point of the SUB2 approximation, just as we expect of the exact 
phase transition at A = I. Both of the SUB2 and SUB2-2 approximants have the 
same asymptotic form, M ~ 1 - zt-z in the Ising-model limit, A ~ c~. 

Further support for the behaxdour of the SUB2 approximation as zl ~ A~ 
being a signal of  the actual phase transition, is provided by the spin-spin 
correlation function G,, defined in Eq. (14a). For these purposes it is acttmlly 
sufficient to consider only its zz-component, G~ ~ -= (tr~a~+,); n >~0. In the 
SUB2 NCCM approximation it is again not difficult to evaluate this correlation 
function explicitly. We find the result: 

= -0.o) sus:.  (57) 
r n = l  

Since the SUB2 coefficients {b, } and {~7, } are nonzero only for odd values of n 
in the s~. = 0 subspace to which we have confined ourselves, it is clez_x that the 
SUB2 esth~ate for G,~ -~ is independent of n for n even and nonzero. On the other 
hand, for n odd we observe the same long-range. ( n ~ )  SUB2 value, 
G~" ~ #  = 2 M -  I as the constant value between different sites on the same 
su't~lattice, in this approximation. Furthermore, for n odd we observe from Eqs. 
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(37), (52) and (57) that the long-range decay in the zz-correlations between spins 
on different sublattices exhibits precisely the same changeover from exponential 
(for A > , t )  to algebraic (at A = Ac) behaviour as characterizes the exact 
transition from the ordered phase (A > 1) to the critical phase (]A[ < 1), from Eq. 
(16). 

6. NCCM parametrization of excited ket states; excitation energies 

Finally, we may also examine the elementary excitations of the system as a 
function of A. Of special interest in this context is whether or not the excitation 
spectrum exhibits a gap. We employ the usual CCM technique of Emrich [79] for 
constructing the excited-state ket wavefunction I~e > in terms of a linear excita- 
tion operator X which acts on the corresponding ground-state wavefunction I~u >: 

[lIJ e > = X[~[/> = XeS[~ >. (58) 

The excitation operator X is chosen, like the ground-state correlation operator S, 
to be constructed purely from linear combinations of products of single-spin 
creation operators: 

N 

x=Exo, 
n = l  

Xn = ~ x~nl)2 ...rn ~ ~ ~ +2" '"  ~ rn + , ( 5 9 )  
{r 1,r 2,...,rn} 

where the sum over the ordered set of indices {rt, r 2 . . . .  , r n } is as given in Eq. 
(25). The operators X and S thus commute. The simplest possible approximation 
for X is the replacement: 

X --+ X, = Z x~ G+, (60) 
s 

where the sum on the index s runs over all sites of a given sublattice. Further- 
more, if the SUB2 approximation (S-~$2) for [7~> is also used in Eq. (58), the 
corresponding approximation for the excited states is henceforth denoted as the 
SUB(l, 2) approximation. It is clear that the excitations so described will have 
s~ = _+ 1, since our SUB2 approximation for ]~u> has s~ = 0. 

By combining the excited-state Schr6dinger equation, H[tIXe > = E e [Txe >, with 
its ground-state counterpart, we easily derive the general CCM equation for the 
excitation energy, ~ - E~ - Eg : 

e-S[H, X] eS[~> = ~x[~>. (61) 

A coupled set of linear equations for the various configuration coefficients of the 
operator X is now obtained by taking the inner product of Eq. (61) in turn with 
the respective wavefunctions corresponding to each configuration (with respect 
to the N6el state) retained in Eq. (59) by the specific approximation. In each of 
these equations the corresponding approximate CCM solution for the ground- 
state operator S is used as known input. The resulting equations have the form 
of a set of linear eigenvalue equations. Equivalently, we observe that the 
approximate CCM excitation energies ee are simply obtained by diagonalizing 
the operator (e-SHe s -  Eg), where S is the approximated CCM ground-state 
correlation operator, within the subspace formed by states of the form of those 
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retained in Eq. (59). In the present SUB(l, 2) case, for example, the coefficients 
{xs } are simply the components of the corresponding eigenvectors belonging to 
each such eigenvalue 8e within the subspace of vectors {a~ I~)}. 

For our infinite 1-d spin-½ chain, the resulting SUB( 1, 2) equations, which are 
thus easily derived by taking the inner product of Eq. (59) with the state as + 1~), 
may once again be solved by Fourier transform techniques. In this way the 
individual excited states may now be labelled by a wave vector q such that 
- n  < q ~< n, and the excitation energy spectrum ~e becomes e(q). The final result 
is given by: 

e(q) = K( 1 - k 2 cos 2 q)½; - n  < q ~< n; SUB( 1, 2), (62) 

where the constants k 2 and K are defined in Eq. (36). As we have described in 
Sect. 3, k 2 < 1 for A > Ac, and the terminating value A = Ac is characterized by 
the point at which k 2 = 1. Hence, the excitation spectrum of Eq. (62) has a gap 
for A >A~, but when A =A~ it has the form e~(q)=Kcsin(q), where 
Kc ~ 1.3642. It is clear that this behaviour closely reflects that of the exact 
excitation spectrum above and at the actual transition point A = 1. For example, 
Eq. (18) shows that the exact single-kink z 1 ( s r=~)  spectrum has the form 
e~(q) =~7zl sin(q) at A = 1. Furthermore, this same expression is also precisely the 
lower (k =0) boundary, E~(q)=G(q), of the physical two-kink (s~ = ___1) 
continuum given by Eq. (22) in the case A = 1. 

7. Discussion and conclusions 

We believe that our analytic and numerical results for the infinite spin-½ 
XXZ-model chain in 1-d clearly indicate that the CCM techniques and approxi- 
mation schemes that we have described have the potential to be powerful tools 
for use on a wider class of related spin-lattice problems. In particular, the 
important extension to the spin-½ square lattice in 2-d is relatively straight- 
forward. Nevertheless, in this case the possible approximation schemes are more 
complicated. Although we cannot expect that the most important 2-d "wrong- 
spin" configurations will be the same for all values of A, there are at least two 
features that we expect to be physically significant in guiding us to formulate 
appropriate truncation schemes, at least in the region where the quantum 
fluctuations have not wholly destroyed the long-range order of the N6el state. 

Thus, in the first place we expect that configurations with a small number of 
"wrong bonds" will be more important than those with a higher number, since 
in a classical picture the breaking of each N6el-state bond in the antiferromag- 
netic regime costs energy. The second concept is based on an extension to 2-d of 
the seemingly important aspects in 1-d of the number of kinks present in a 
configuration and the size of the locale. We are thus led to define the length of 
the "domain boundary" of a given configuration as the number of lattice bonds 
crossed by a shortest-path circuit enclosing all of the "wrong" spins of that 
configuration. We then expect that configurations with the smallest value of this 
domain-boundary length may be of predominant importance. More generally, 
those configurations with the least values of both of the above parameters are 
almost sure to be the most significant. 

We have performed some preliminary calculations for the 2-d square lattice 
which seems to bear out the relevance of the above two points, at least for 
calculations of the ground-state energy. Furthermore, calculations in the SUB2 
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approximation based on a N6el model state again give a terminating point. The 
corresponding critical value, Ac ~ 0.7985, is thus closer to the classical value of 
1 than for the 1-d case. However, quite unlike the 1-d case, the staggered 
magnetization for the square lattice does not vanish in the NCCM SUB2 
approximation at A = Ac, but instead takes the value Mc ~ 0.682, at which point 
the ground,state energy has the value Eg/N ,~ -0.5836. By contrast, we note 
that spin-wave theory [67, 68, 80], for example, breaks down in all dimensions 
whenever A < 1. For the 1-d chain spin-wave theory gives a divergent result at 
d = 1 for the staggered magnetization, whereas the comparable result for the 2-d 
lattice is Mc ,.~ 0.606. Our own SUB2 results for the Heisenberg square lattice are 
Eg/N ~ -0.6508 and M ~ 0.827. 

For better comparison purposes it is unfortunate that very few exact results 
are known for the spin-½ lattice for dimensionality greater than one. For 
example, to the best of our knowledge, no rigorous proof has ever been given 
concerning the presehce of long-range order for the 2-d Heisenberg model on a 
square lattice, although it is known that this model is disordered at any nonzero 
temperature [81]. However, on the basis of numericalwork involving both exact 
diagonalization on small lattices and Monte Carlo calculations ofvarious kinds 
for bigger lattices, it is widely believed that the spin-½ Heisenberg model on a 
square lattice shows a nonzero staggered magnetization, unlike its 1-d chain 
counterpart. 

For example, Green's function Monte Carlo calculations have been per- 
formed for the Heisenberg model by both Carlson [82] and Trivedi and Ceperley 
[83], on lattices of size up to 32 x 32. These authors agree that the extrapolated 
ground-state energy for infinite lattice size is Eg/N = -0.6692 _ 0.0002, whereas 
for the staggered magnetization (in our units) Carlson gives M = 0.68 __+ 0.02 and 
Trivedi and Ceperley give M = 0.62_ 0.04. In conclusion, it is clear that our 
own CCM results suggest the presence of a phase transition for the 2-d 
XXZ-model on a square lattice also, but with some features which are quite 
different from the 1-d chain. Although more work is clearly needed, we are 
encouraged by these early results. 

It will also be of interest to extend our 1-d spin-½ chain results to the 
corresponding cases with spins s > ½, particularly in view of the possibility to 
shed some light on the appearance of the so-called Haldane phase [59-61] for 
the spin-1 chain. We are also interested in studying the sensitivity of the present 
results and of particular approximation schemes to the choice of model state. 
Although the N6el state is an obvious candidate in this respect, it is by no means 
the only such choice. 

Finally, we hope that the new PSUBn and LSUB-n schemes that we have 
devised may also find wider practical use. It is possible that not only might they 
be useful for application to such other discrete lattice problems of interest to 
chemists as the cyclic polyenes, but also to more general molecular systems. 
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