31,575 research outputs found
Manual for extending the laser specklegram technique to strain analysis of rotating components
The theory, techniques, and equipment necessary for extending laser speckle techniques to analyze stresses in rotating blades are described. Details for setting up the equipment, for timing the events, for data recording, and for data analysis are discussed. Finite element techniques are investigated for analysis of speckle data. Advantages and limitations of the finite element analysis for the speckle data are discussed. The finite element program is listed
Development of basic theories and techniques for determining stresses in rotating turbine or compressor blades
A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed
Recommended from our members
Simulation and Measurement of Transient Fluid Phenomena within Diesel Injection
Rail pressures of modern diesel fuel injection systems have increased significantly over recent years, greatly improving atomisation of the main fuel injection event and air utilisation of the combustion process. Continued improvement in controlling the process of introducing fuel into the cylinder has led to focussing on fluid phenomena related to transient response. High-speed microscopy has been employed to visualise the detailed fluid dynamics around the near nozzle region of an automotive diesel fuel injector, during the opening, closing and post injection events. Complementary computational fluid dynamic (CFD) simulations have been undertaken to elucidate the interaction of the liquid and gas phases during these highly transient events, including an assessment of close-coupled injections. Microscopic imaging shows the development of a plug flow in the initial stages of injection, with rapid transition into a primary breakup regime, transitioning to a finely atomised spray and subsequent vaporisation of the fuel. During closuring of the injector the spray collapses, with evidence of swirling breakup structures together with unstable ligaments of fuel breaking into large slow-moving droplets. This leads to sub-optimal combustion in the developing flame fronts established by the earlier, more fully-developed spray. The simulation results predict these observed phenomena, including injector surface wetting as a result of large slow-moving droplets and post-injection discharge of liquid fuel. This work suggests that post-injection discharges of fuel play a part in the mechanism of the initial formation, and subsequent accumulation of deposits on the exterior surface of the injector. For multiple injections, opening events are influenced by the dynamics of the previous injection closure; these phenomena have been investigated within the simulations
Electron heating mechanisms in dual frequency capacitive discharges
We discuss electron heating mechanisms in the sheath regions of dual-frequency capacitive discharges, with the twin aims of identifying the dominant mechanisms and supplying closed-form expressions from which the heating power can be estimated. We show that the heating effect produced by either Ohmic or collisionless heating is much larger when the discharge is excited by a superposition of currents at two frequencies than if either current had acted alone. This coupling effect occurs because the lower frequency current, while not directly heating the electrons to any great extent, strongly affects the spatial structure of the discharge in the sheath regions
CeCoIn5 - a quantum critical superfluid
We have made the first complete measurements of the London penetration depth
of CeCoIn5, a quantum-critical metal where superconductivity
arises from a non-Fermi-liquid normal state. Using a novel tunnel diode
oscillator designed to avoid spurious contributions to , we have
established the existence of intrinsic and anomalous power-law behaviour at low
temperature. A systematic analysis raises the possibility that the unusual
observations are due to an extension of quantum criticality into the
superconducting state.Comment: 5 pages, 3 figure
PSPC soft x-ray observations of Seyfert 2 galaxies
We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission
A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data
We have initiated a spectral line survey, at a wavelength of 3 millimeters,
toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral
line survey of the Sgr B2(N) region utilizing data from both an interferometer
(BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this
survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified
molecular transitions, 1 recombination line, and 120 unidentified transitions).
This yields a spectral line density (lines per 100 MHz) of 6.06, which is much
larger than any previous 3 mm line survey. We also present maps from the BIMA
Array that indicate that most highly saturated species (3 or more H atoms) are
products of grain chemistry or warm gas phase chemistry. Due to the nature of
this survey we are able to probe each spectral line on multiple spatial scales,
yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa
State space c-reductions for concurrent systems in rewriting logic
We present c-reductions, a state space reduction technique.
The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer
function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in
the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization
of the reduction infrastructure via Maude's meta-programming
features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools
A feasibility randomised controlled trial of the New Orleans intervention of infant mental health: a study protocol
Child maltreatment is associated with life-long social, physical, and mental health problems. Intervening early to provide maltreated children with safe, nurturing care can improve outcomes. The need for prompt decisions about permanent placement (i.e., regarding adoption or return home) is internationally recognised. However, a recent Glasgow audit showed that many maltreated children “revolve” between birth families and foster carers. This paper describes the protocol of the first exploratory randomised controlled trial of a mental health intervention aimed at improving placement permanency decisions for maltreated children. This trial compares an infant's mental health intervention with the new enhanced service as usual for maltreated children entering care in Glasgow. As both are new services, the trial is being conducted from a position of equipoise. The outcome assessment covers various fields of a child’s neurodevelopment to identify problems in any ESSENCE domain. The feasibility, reliability, and developmental appropriateness of all outcome measures are examined. Additionally, the potential for linkage with routinely collected data on health and social care and, in the future, education is explored. The results will inform a definitive randomised controlled trial that could potentially lead to long lasting benefits for the Scottish population and which may be applicable to other areas of the world
- …