16,148 research outputs found
Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in \u3cem\u3eC. elegans\u3c/em\u3e
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate the translation and/or stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single-gene knockouts did not result in detectable mutant phenotypes. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways. With these two approaches, we identified mutant phenotypes for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that the use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis
The Two Fluid Drop Snap-off Problem: Experiments and Theory
We address the dynamics of a drop with viscosity breaking up
inside another fluid of viscosity . For , a scaling theory
predicts the time evolution of the drop shape near the point of snap-off which
is in excellent agreement with experiment and previous simulations of Lister
and Stone. We also investigate the dependence of the shape and
breaking rate.Comment: 4 pages, 3 figure
Ribosomal RNA Gene Restriction Patterns Provide Increased Sensitivity for Typing Salmonella typhi Strains
To date, epidemiologic associations among strains of Salmonella typhi are based exclusively on phage typing, which may be of limited value if a common phage type is involved. Analysis of ribosomal RNA gene restriction patterns allows separation of most independently isolated strains of identical phage types. The sensitivity of the method is dependent on the restriction enzymes used to digest chromosomal DNA. It was highest for PstI, which separated 16 of 20 strains that belonged to 8 phage types including 3 untypable strains. Three strains differed in their phage types but had identical ribosomal RNA gene restriction patterns. Also, two pairs of strains indistinguishable by phage typing exhibited identical patterns; however, two of these strains were expected to be identical because they were isolated from two patients who were likely exposed to the same source. Ribosomal RNA gene restriction patterns appear to be stable. Thus, the method may complement phage typing and aid in further differentiation of strain
Consequences of wall stiffness for a beta-soft potential
Modifications of the infinite square well E(5) and X(5) descriptions of
transitional nuclear structure are considered. The eigenproblem for a potential
with linear sloped walls is solved. The consequences of the introduction of
sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.
Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics
In classical physics, the familiar sine and cosine functions appear in two
forms: (1) geometrical, in the treatment of vectors such as forces and
velocities, and (2) differential, as solutions of oscillation and wave
equations. These two forms correspond to two different definitions of
trigonometric functions, one geometrical using right triangles and unit
circles, and the other employing differential equations. Although the two
definitions must be equivalent, this equivalence is not demonstrated in
textbooks. In this manuscript, the equivalence between the geometrical and the
differential definition is presented assuming no a priori knowledge of the
properties of sine and cosine functions. We start with the usual length
projections on the unit circle and use elementary geometry and elementary
calculus to arrive to harmonic differential equations. This more general and
abstract treatment not only reveals the equivalence of the two definitions but
also provides an instructive perspective on circular and harmonic motion as
studied in kinematics. This exercise can help develop an appreciation of
abstract thinking in physics.Comment: 6 pages including 1 figur
Finite Element Methods for Elliptic Distributed Optimal Control Problems with Pointwise State Constraints
Finite element methods for a model elliptic distributed optimal control
problem with pointwise state constraints are considered from the perspective of
fourth order boundary value problems
Investigating the high energy QCD approaches for prompt photon production at the LHC
We investigate the rapidity and transverse momentum distributions of the
prompt photon production at the CERN LHC energies considering the current
perturbative QCD approaches for this scattering process. Namely, we compare the
predictions from the usual NLO pQCD calculations to the the color dipole
formalism, using distinct dipole cross sections. Special attention is paid to
parton saturation models at high energies, which are expected to be important
at the forward rapidities in pp collisions at the LHC.Comment: Contribution to the proceedings of the 3rd International Conference
on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard
Probes 2008), 8-14 June 2008, Illa da Toxa (Galicia-Spain). Talk presented by
M.V.T. Machad
Overview of Recent Flight Flutter Testing Research at NASA Dryden
In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle
Driven Brownian transport through arrays of symmetric obstacles
We numerically investigate the transport of a suspended overdamped Brownian
particle which is driven through a two-dimensional rectangular array of
circular obstacles with finite radius. Two limiting cases are considered in
detail, namely, when the constant drive is parallel to the principal or the
diagonal array axes. This corresponds to studying the Brownian transport in
periodic channels with reflecting walls of different topologies. The mobility
and diffusivity of the transported particles in such channels are determined as
functions of the drive and the array geometric parameters. Prominent transport
features, like negative differential mobilities, excess diffusion peaks, and
unconventional asymptotic behaviors, are explained in terms of two distinct
lengths, the size of single obstacles (trapping length) and the lattice
constant of the array (local correlation length). Local correlation effects are
further analyzed by continuously rotating the drive between the two limiting
orientations.Comment: 10 pages 13 figure
- …