18 research outputs found

    The Effect of Store-to-store Energy Transfers On the Global Dynamics of Aircraft

    Get PDF
    This study analyzes the energy transfer mechanisms when nonlinear devices (stores) are attached to a linear model airplane. For that, a reduced-order model (ROM) was derived to simulate the first two flexible modes of vibration of the primary structure (aircraft) with one store in each wing. Each store can either be locked or unlocked. When locked, it only contributes as mass-effect, and when unlocked, it adds nonlinearity to the system. Simulations were then performed with either both stores locked, one store unlocked, or both stores unlocked. It was found that the attachment of nonlinear stores in the ROM changes the global dynamics of the primary structure. However, contrary to what was previously reported in the literature, no destructive interactions were found when both stores were unlocked. Since the ROM did not replicate the results reported in the literature, experiments were conducted to investigate why the ROM failed. Like in the ROM, experiments could not capture destructive interactions between the stores. However, it was found that the geometry of the primary structure and the orientation of the stores directly affect the energy transfer mechanisms

    Origin and fate of the regenerating cells of the kidney

    No full text
    The kidney has the capacity to regenerate itself provided that the damage is limited and the structure of the kidney remains intact. Nevertheless, in disease conditions this potential may be compromised, leading to progression to chronic kidney disease. For development of new therapeutic strategies it is a prerequisite to understand the origin and regulation of the kidney regenerating cells and the processes that underlie maladaptive repair. Because of the complexity of the kidney consisting of a high number of different cell types, it is a complex task to unravel the origin and fate of cells responsible for regeneration. This review summarises the recent and most important advances in identifying regenerating cell populations of the kidney, and highlights the existing controversies

    Glomerular Outgrowth as an Ex Vivo Assay to Analyze Pathways Involved in Parietal Epithelial Cell Activation

    No full text
    Parietal epithelial cell (PEC) activation is one of the key factors involved in the development and progression of glomerulosclerosis. Inhibition of pathways involved in parietal epithelial cell activation could therefore be a tool to attenuate the progression of glomerular diseases. This article describes a method to culture and analyze parietal epithelial cell outgrowth of encapsulated glomeruli isolated from mouse kidney. After dissecting isolated mouse kidneys, the tissue is minced, and glomeruli are isolated by sieving. Encapsulated glomeruli are collected, and single glomeruli are cultured for 6 days to obtain glomerular outgrowth of parietal epithelial cells. During this period, parietal epithelial cell proliferation and migration can be analyzed by determining the cell number or the surface area of outgrowing cells. This assay can therefore be used as a tool to study the effects of an altered gene expression in transgenic- or knockout-mice or the effects of culture conditions on parietal epithelial cell growth characteristics and signaling. Using this method, important pathways involved in the process of parietal epithelial cell activation and consequently in glomerulosclerosis can be studied

    Motile Cilia on Kidney Proximal Tubular Epithelial Cells Are Associated With Tubular Injury and Interstitial Fibrosis

    No full text
    It is well established that mammalian kidney epithelial cells contain a single non-motile primary cilium (9 + 0 pattern). However, we noted the presence of multiple motile cilia with a central microtubular pair (9 + 2 pattern) in kidney biopsies of 11 patients with various kidney diseases, using transmission electron microscopy. Immunofluorescence staining revealed the expression of the motile cilia-specific markers Radial Spoke Head Protein 4 homolog A, Forkhead-box-protein J1 and Regulatory factor X3. Multiciliated cells were exclusively observed in proximal tubuli and a relative frequent observation in human kidney tissue: in 16.7% of biopsies with tubular injury and atrophy (3 of 18 tissues), in 17.6% of biopsies from patients with membranous nephropathy (3 of 17 tissues) and in 10% of the human kidney tissues derived from the unaffected pole after tumour nephrectomy (3 of 30 tissues). However, these particular tissues showed marked tubular injury and fibrosis. Further analysis showed a significant relation between the presence of multiciliated cells and an increased expression of alpha-smooth-muscle-actin (p-value < 0.01) and presence of Kidney-injury-molecule-1 (p-value < 0.01). Interestingly, multiciliated cells co-showed staining for the scattered tubular cell markers annexin A2, annexin A3, vimentin and phosphofructokinase platelet but not with cell senescence associated markers, like (p16) and degradation of lamin B. In conclusion, multiciliated proximal tubular cells with motile cilia were frequently observed in kidney biopsies and associated with tubular injury and interstitial fibrosis. These data suggest that proximal tubular cells are able to transdifferentiate into multiciliated cells

    Extracellular Vesicle Isolation and Characterization from Periprosthetic Joint Synovial Fluid in Revision Total Joint Arthroplasty

    No full text
    Extracellular vesicles (EVs) comprise an as yet insufficiently investigated intercellular communication pathway in the field of revision total joint arthroplasty (RTJA). This study examined whether periprosthetic joint synovial fluid contains EVs, developed a protocol for their isolation and characterized them with respect to quantity, size, surface markers as well as documented their differences between aseptic implant failure (AIF) and periprosthetic joint infection (PJI). EV isolation was accomplished using ultracentrifugation, electron microscopy (EM) and nanoparticle tracking analysis evaluated EV presence as well as particle size and quantity. EV surface markers were studied by a bead-based multiplex analysis. Using our protocol, EM confirmed the presence of EVs in periprosthetic joint synovial fluid. Higher EV particle concentrations and decreased particle sizes were apparent for PJI. Multiplex analysis confirmed EV-typical surface epitopes and revealed upregulated CD44 and HLA-DR/DP/DQ for AIF, as well as increased CD40 and CD105. Our protocol achieved isolation of EVs from periprosthetic joint synovial fluid, confirmed by EM and multiplex analysis. Characterization was documented with respect to size, concentration and epitope surface signature. Our results indicate various differences between PJI and AIF EVs. This pilot study enables new research approaches and rising diagnostic opportunities in the field of RTJA
    corecore