62 research outputs found

    Mechanical Writing of Ferroelectric Polarization

    Get PDF
    Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically. Inlcudes supplementary materials

    GÖÇ VE YAŞAM

    Get PDF
    Uluslararası Bakalorya Programı, A1 dersi Türk Dili ve Edebiyatı alanında ele alınan bu tezde, Orhan Kemal'in Gurbet Kuşları adlı yapıtında göç olgusu nedenleri ve sonuçlarıyla beraber incelenmiştir. Göç olgusuyla değişen toplumsal yapı, ekonomik ve kültürel farklılıklar çerçevesinde değerlendirilmiştir. Bu tezin amacı, göç olgusunun toplumsal yapıda alt sınıf ve üst sınıflardaki bireyler üzerindeki etkilerini ortaya koymaktır. Üç ana bölümden oluşan tezin ilk bölümünde yapıta adını veren Gurbet Kuşları kavramı üzerinde durulmuştur. Köylülerin aidiyetsizliği ve uyum sorunu bu bölümde aktarılmıştır. Tezin ikinci bölümünde ise köylülerin köyden kente göç sürecinde yaşadıkları kadın ve erkek figürler üzerinden neden ve sonuçlarıyla işlenmiştir. Tezin üçüncü bölümünde şehirliler başlığı altından genel olarak şehirde – İstanbul – yaşayan insanların göç sürecinde köylülerle yaşadıkları uyumsuzluk ve çatışmalara yer verilmektedir. Çalışmada göç sürecinde şehre yerleşen figürlerin şehirlilerle aralarındaki ekonomik ve kültürel farklılıkların sınıflar arasında geçişe olanak tanımadığı sonucuna varılmıştır

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes

    Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship

    Get PDF
    International audienceBACKGROUND: Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein - protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. CONCLUSIONS/SIGNIFICANCE: The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence - structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field

    The role of crystalline anisotropy in mechanical property extractions through Berkovich indentation

    No full text
    This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals

    The statistical mechanics of semi-flexible macromolecules

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D53368/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Sharp indentation crystal plasticity finite element simulations: Assessment of crystallographic anisotropy effects on the mechanical response of thin fcc single crystalline films

    No full text
    Continuum crystal plasticity finite element modeling has been used to address size-effects during indentation of thin-metallic films. Berkovich indentation simulations were performed in the frame of continuum crystal plasticity to study the influence of a rigid fcc single-crystalline silicon substrate on a soft thin-metallic copper fcc single crystal film with different crystallographic orientations. It has been observed that crystallographic orientation of the indented plane has a great influence on the penetration depth at which substrate effects come into play, particularly in terms of hardness evolution. This effect has been related to the spatial arrangement of the active slip systems and the consequent plastic flow towards the substrate. In fcc crystals, indented planes that favor plastic flow along the indentation axis, such as (011) and (111) planes, are more sensitive than those in which plastic flow is favored perpendicular to the indentation axis, like (001) plane. In addition, evolution of the indentation modulus in terms of the ratio of penetrated film (penetration depth divided by film thickness) has been studied for different crystallographic orientations, showing that extrapolating the indentation modulus value from zero penetration depth reaches the same value as that found in bulk single crystals. However, indentation modulus increases linearly after the first contact, due to the elastic response of the thin films being influenced by the substrate stiffness at all penetration depths. Differences in load-displacement curves for bulk single crystals and thin, single crystalline films are justified by the elastic contrast between films and the substrate on which they are deposited. (C) 2014 Elsevier B.V. All rights reserved.Peer Reviewe
    • …
    corecore